欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1275-1282.doi: 10.3724/SP.J.1006.2020.91068

• 研究简报 • 上一篇    下一篇

两个不同籽粒硬度小麦的比较蛋白组学分析

刘培勋1,马小飞2,万洪深1,郑建敏1,罗江陶1,蒲宗君1,*()   

  1. 1四川省农业科学院作物研究所/农业农村部西南地区小麦生物学与遗传育种重点实验室, 四川成都 610066
    2山西省农业科学院小麦研究所, 山西临汾 041000
  • 收稿日期:2019-11-23 接受日期:2020-03-30 出版日期:2020-08-12 网络出版日期:2020-05-17
  • 通讯作者: 蒲宗君
  • 作者简介:E-mail: littlefarmer@163.com; Tel: 028-84504231
  • 基金资助:
    国家自然科学基金项目(31671683);国家自然科学基金项目(31401383);四川省财政创新能力提升工程(2016ZYPZ-016);四川省财政创新能力提升工程(2019QNJJ-007);四川省财政创新能力提升工程(2019QYXK034);四川省科技计划项目(2017JY0077)

Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index

LIU Pei-Xun1,MA Xiao-Fei2,WAN Hong-Shen1,ZHENG Jian-Min1,LUO Jiang-Tao1,PU Zong-Jun1,*()   

  1. 1Crop Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, Sichuan, China
    2Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
  • Received:2019-11-23 Accepted:2020-03-30 Published:2020-08-12 Published online:2020-05-17
  • Contact: Zong-Jun PU
  • Supported by:
    National Natural Science Foundation of China(31671683);National Natural Science Foundation of China(31401383);Financial Innovation Capacity Improvement Project of Sichuan Province(2016ZYPZ-016);Financial Innovation Capacity Improvement Project of Sichuan Province(2019QNJJ-007);Financial Innovation Capacity Improvement Project of Sichuan Province(2019QYXK034);Science and Technology Planning Project of Sichuan Province(2017JY0077)

摘要:

小麦是全球种植面积最大粮食作物, 为全球45亿人提供日常蛋白和能量摄入的20%。弄清小麦籽粒硬度遗传基础, 对于改良小麦品质具有重大意义。为探讨不同硬度小麦种子的分子基础, 本实验选用西南麦区2个硬度差异极显著的小麦品种川麦66和蜀麦969, 从蛋白水平上分析其种子蛋白差异表达情况, 利用TMT定量蛋白质组学技术(tandem mass tags)结合生物信息学分析, 分析差异表达的蛋白及其功能和通路等富集情况。结果表明, 鉴定并定量了有效蛋白6020个, 其中显著差异表达蛋白113个, 在软质麦川麦66中上调表达的69个, 下调表达的44个。差异蛋白GO富集分析共富集到65个GO条目, 达到极显著富集水平的包括生物过程的1个条目、细胞组成的1个条目和分子功能的6个条目。推测营养库活性类蛋白、酶抑制剂活性类蛋白和谷胱甘肽代谢途径类蛋白可能参与小麦籽粒硬度形成。籽粒硬度相关蛋白可能主要分布于细胞胞外区, 具有防御作用。从系统发育分析推测, puroindolines蛋白及其同源蛋白, 可能既作为小麦籽粒贮藏蛋白, 同时还能作为酶抑制剂调控籽粒发育。本研究为进一步探索小麦籽粒硬度遗传机制提供了参考。

关键词: 小麦, 籽粒硬度, TMT, 蛋白质组

Abstract:

Wheat is the crop most widely grown in the world and provides the daily protein and 20% food calories for 4.5 billion people. It is crucial to understand the genetic basis of grain hardness for improving wheat quality. In order to explore the molecular basis of the formation of wheat grain hardness, two wheat cultivars Chuanmai 66 and Shumai 969 with significant hardness difference in southwest wheat region were selected to analyze the proteins differential expression by TMT quantitative proteomics (tandem mass tags) and bioinformatic methods of function and pathway enrichment analysis. A total of 6020 effective proteins were identified and quantified, including 113 differentially expressed proteins (DEPs), of which 69 were up-regulated and 44 were down-regulated in soft wheat Chuanmai 66. These DEPs were enriched into 65 GO terms, including a biological process term, a cellular component term and six molecular function terms at extremely significant level. Based on the enrichment analysis, we suggested that nutrient reservoir activity proteins, enzyme inhibitor proteins and glutathione metabolism proteins might participate in the formation of wheat grain hardness, and grain hardness related proteins might mainly distribute in the extracellular region of cells and had defensive function. According to the phylogenetic analysis, it was inferred that puroindolines and its homologous proteins might be as not only wheat grain storage proteins, but also enzyme inhibitors regulating grain development. This study provides a basis for further exploring the genetic mechanism of wheat grain hardness.

Key words: Triticum aestivum L., grain hardness, TMT, protemics

图1

川麦66和蜀麦969籽粒主要品质指标比较"

图2

蛋白质功能注释结果"

图3

差异表达蛋白火山图"

图4

GO富集柱状图 A属于生物过程(BP), B属于细胞组分(CC), C、D、E、F、G、H、I、J属于分子功能(MF)。A: 防御反应; B: 胞外区; C: 营养库活性; D: 酶抑制剂活性; E: 酶调节活性; F: 丝氨酸型内肽酶抑制剂活性; G: 肽链内切酶抑制剂活性; H: 天冬氨酸型内肽酶活性; I: 电子载体活性; J: 几丁质结合。"

表1

营养库活性类相关差异表达蛋白(川麦66 vs. 蜀麦969)"

蛋白名称
Protein ID
描述
Description
差异倍数
Fold change
上调/下调
Up/down
B2Y2Q6 B2Y2Q6_WHEAT LMW-B2 1.5425 Up
B2BZC7 B2BZC7_WHEAT LMW-m glutenin subunit 0154A5-M 1.8737 Up
A0A173DQZ1 A0A173DQZ1_WHEAT type-b avenin-like protein 3.8163 Up
Q8H0J5 Q8H0J5_WHEAT low molecular weight glutenin subunit (fragment) 5.0056 Up
TraesCS7A01G035300.1 Gliadin-like avenin 2.9853 Up
Q6WZC3 Q6WZC3_WHEAT low molecular weight glutenin subunit 2.1622 Up
TraesCS4A01G453400.1 Gamma-gliadin 7.2606 Up
A0A286QTK1 A0A286QTK1_WHEAT avenin-like protein A2 0.5984 Down
F8SGL3 F8SGL3_WHEAT low-molecular-weight glutenin subunit 0.5493 Down
Q0QBR3 Q0QBR3_WHEAT LMW-glutenin P3-5 0.3190 Down
B2Y2R3 B2Y2R3_WHEAT low molecular weight glutenin subunit 0.5725 Down
B6UKN9 B6UKN9_WHEAT gamma-gliadin 0.6340 Down
TraesCS2A01G211800.1 Germin-like protein 1-1 0.5875 Down
A0A2P1H6A2 A0A2P1H6A2_WHEAT alpha-gliadin 0.5908 Down
A0A0K2QJY6 A0A0K2QJY6_WHEAT alpha/beta-gliadin 0.6081 Down
I0IT65 I0IT65_WHEAT alpha-gliadin 0.6241 Down

表2

酶抑制剂类相关差异表达蛋白(川麦66 vs. 蜀麦969)"

蛋白名称
Protein ID
描述
Description
差异倍数
Fold change
上调/下调
Up/down
Q5UHH6 Q5UHH6_WHEAT 0.19 dimeric alpha-amylase inhibitor (fragment) 1.6788 Up
TraesCS5D01G004300.1 Puroindoline-b, protease inhibitor/seed storage/LTP family 2.8227 Up
P81713 IBB3_WHEAT Bowman-Birk type trypsin inhibitor 1.5092 Up
TraesCS4A01G460900.1 Invertase inhibitor, plant invertase/pectin methylesterase inhibitor 1.5169 Up
TraesCS1D01G028500.1 Chymotrypsin inhibitor 2.3465 Up
TraesCS5D01G561800.1 Invertase inhibitor, plant invertase/pectin methylesterase inhibitor 2.0582 Up
A0A080YTU1 A0A080YTU1_WHEAT uncharacterized protein 1.5779 Up
A0A2X0S1F0 A0A2X0S1F0_WHEAT peptidase A1 domain-containing protein 1.9149 Up
TraesCS4D01G205800.1 ADP-ribosylation factor GTPase-activating protein 1.6650 Up
TraesCS7A01G502500.1 Eukaryotic aspartyl protease family protein 2.3542 Up
TraesCS3D01G467500.1 Eukaryotic aspartyl protease family protein 0.3700 Down
TraesCS4D01G250000.1 Dimeric alpha-amylase inhibitor 0.3659 Down
TraesCS1D01G265900.1 Wound-induced protease inhibitor 0.5474 Down
TraesCS3D01G025700.1 Trypsin inhibitor 0.1974 Down
TraesCS6B01G407700.1 Aspartic proteinase nepenthesin-1 0.6473 Down

表3

谷胱甘肽代谢途径相关差异表达蛋白(川麦66 vs. 蜀麦969)"

蛋白名称
Protein ID
描述
Description
差异倍数
Fold change
上调/下调
Up/down
TraesCS3D01G491400.1 6-phosphogluconate dehydrogenase 2.5968 Up
TraesCS2B01G096200.1 Ascorbate peroxidase 1.5695 Up
TraesCS3A01G488200.1 Glutathione S-transferase 1.5215 Up
TraesCS3B01G536100.1 Glutathione S-transferase 1.9499 Up
TraesCS3D01G445400.1 Glutathione S-transferase 0.6058 Down
W5D4D9 W5D4D9_WHEAT uncharacterized protein 0.5675 Down

图5

软质麦中上调表达蛋白与puroindolines蛋白共同构建的系统发育树 带实心圆形的为puroindolines蛋白; 带空心正方形的为营养库活性类别; 带空心三角形的为酶抑制剂活性类别; 带空心圆形的为谷胱甘肽代谢途径蛋白。"

[1] Bakhella M, Hoseney R C, Lookhart G L. Hardness of Moroccan wheats. Cereal Chem, 1990,67:246-250.
[2] 吴宏亚, 蒋正宁, 王玲, 程顺和. 小麦籽粒硬度及其对面粉加工品质影响的研究进展. 江苏农业学报, 2014,30:437-441.
Wu H Y, Jiang Z N, Wang L, Cheng S H. Research progress in wheat kernel hardness and its effect on milling quality. Jiangsu J Agric Sci, 2014,30:437-441 (in Chinese with English abstract).
[3] 李硕碧. 小麦籽粒胚乳结构性状的研究. 西北农林科技大学学报(自然科学版). 2002,30(5):7-10.
Li S B. Study on structural characters of grain endosperm of wheat. J Northwest A&F Univ(Nat Sci Edn), 2002,30(5):7-10 (in Chinese with English abstract).
[4] Giroux M J, Morris C F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Nat Acad Sci USA, 1998,95:6262-6266.
doi: 10.1073/pnas.95.11.6262
[5] Mods C F. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol, 2002,48:633-647.
doi: 10.1023/A:1014837431178
[6] Wiley P R, Tosi P, Evrard A, Lovegrove A, Jones H D, Shewry P R. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol, 2007,64:125-136.
doi: 10.1007/s11103-007-9139-x pmid: 17294254
[7] 陈锋, 董中东, 程西永, 詹克慧, 许海霞, 崔党群. 小麦puroindoline及其相关基因分子遗传基础研究进展. 中国农业科学, 2010,43:1108-1116.
Chen F, Dong Z D, Cheng X Y, Zhan K H, Xu H X, Cui D Q. Advances in research of molecular genetics of puroindoline and its related genes in wheat. Sci Agric Sin, 2010,43:1108-1116 (in Chinese with English abstract)
[8] Gollan P, Smith K, Bhave M. Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J Cereal Sci, 2007,45:184-198.
[9] Wilkinson M, Wan Y, Tosi P, Leverington M, Snape J, Mitchell R A C, Shewry P R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J Cereal Sci, 2008,48:722-728.
doi: 10.1016/j.jcs.2008.03.007
[10] Chen F, Beecher B S, Morris C F. Physical mapping and a new variant of puroindoline b-2 genes in wheat. Theor Appl Genet, 2010,120:745-751.
doi: 10.1007/s00122-009-1195-y
[11] Anderson O D, Hsia C C, Adalsteins A E, Lew E L, Kasarda D D. Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes. Theor Appl Genet, 2001,103:307-315.
doi: 10.1007/s001220100576
[12] Zhang Y, Hu X, Islam S, She M, Peng Y, Yu Z, Zhang J. New insights into the evolution of wheat avenin-like proteins in wild emmer wheat (Triticum dicoccoides). Proc Natl Acad Sci USA, 2018,115:13312-13317.
doi: 10.1073/pnas.1812855115 pmid: 30530679
[13] Furtado A, Bundock P C, Banks P M, Fox G, Yin X, Henry R J. A novel highly differentially expressed gene in wheat endosperm associated with bread quality. Sci Rep, 2015,5:10446.
pmid: 26011437
[14] Guzmán C, Xiao Y, Crossa J, González-Santoyo H, Huerta J, Singh R, Dreisigacker S. Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 2016,209:689-692.
[15] 刘培勋, 万洪深, 郑建敏, 罗江陶, 蒲宗君. 小麦PIN基因家族的鉴定及表达分析. 中国农业科学, 2020,53(12):2321-2330.
Liu P X, Wan H S, Zheng J M, Luo J T, Pu Z J. Genome-wide identification and expression analysis of PIN genes family in wheat. Sci Agric Sin, 2020,53(12):2321-2330 (in Chinese with English abstract).
[16] Ayala M, Guzmán C, Peña R J, Alvarez J B. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). J Cereal Sci, 2016,71:61-65.
[17] Chen M, Wilkinson M, Tosi P, He G, Shewry P. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet, 2005,111:1159-1166.
doi: 10.1007/s00122-005-0047-7 pmid: 16133313
[18] Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Guerche C. Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol, 2018,19:111.
doi: 10.1186/s13059-018-1491-4 pmid: 30115101
[19] UniProt: the universal protein knowledgebase. Nucleic Acids Res, 2016,45:D158-D169.
[20] 郑建敏, 蒲宗君. 白皮优质弱筋小麦新品种川麦 66. 四川农业科技, 2015, (2):24-24.
Zheng J M, Pu Z J. Chuanmai 66, a new white wheat variety with high quality and soft grain. Sci Technol Sichuan Agric, 2015, (2):24-24 (in Chinese).
[21] 蒋进, 王淑荣, 张连全, 刘利, 冯晓, 左娟. 四川省“十二五” 期间育成小麦新品种的品质分析. 种子, 2017,36(2):95-99.
Jiang J, Wang S R, Zhang L Q, Liu L, Feng X, Zuo J. Quality analysis of wheat varieties released in Sichuan province during the 12th Five-Year Plan. Seed, 2017,36(2):95-99 (in Chinese).
[22] Wu J, An Y, Pu H, Shan Y, Ren X, An M, Ji J. Enrichment of serum low-molecular-weight proteins using C18 absorbent under urea/dithiothreitol denatured environment. Anal Biochem, 2010,398:34-44.
doi: 10.1016/j.ab.2009.10.047 pmid: 19891953
[23] Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Hamon C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 2003,75:1895-1904.
doi: 10.1021/ac0262560 pmid: 12713048
[24] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Harris M A. Gene ontology: tool for the unification of biology. Nat Genet, 2000,25:25-29.
doi: 10.1038/75556 pmid: 10802651
[25] Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita K F, Itoh M, Kawashima S, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucl Acids Res, 2006,34:354-357.
[26] Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Koonin E V, Rao B S. The COG database: an updated version includes eukaryotes. BMC Bioinform, 2003,4:41.
[27] Finn R D, Attwood T K, Babbitt P C, Bateman A, Bork P, Bridge A J, Gough J. InterPro in 2017: beyond protein family and domain annotations. Nucleic Acids Res, Jan 2017; doi: 10.1093/nar/gkw1107.
pmid: 32652019
[28] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870.
doi: 10.1093/molbev/msw054 pmid: 27004904
[29] 宋奇琦, Pratiksha SINGH, Rajesh Kumar SINGH, 宋修鹏, 李海碧, 农友业, 杨丽涛, 李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析. 作物学报, 2019,45:55-69.
Song Q Q, Pratiksha S, Rajesh K S, Song X P, Li H B, Nong Y Y, Yang L T, Li Y R. Proteomic analysis of sugarcane- Sporisorium scitamineum interaction based on iTRAQ technique. Acta Agron Sin, 2019,45:55-69.
[30] Kim K H, Feiz L, Dyer A T, Grey W, Hogg A C, Martin J M, Giroux M J. Increased resistance to Penicillium seed rot in transgenic wheat over-expressing puroindolines. J Phytopathol, 2012,160:243-247.
[31] Dhatwalia V K, Sati O P, Tripathi M K, Kumar A. Puroindoline: antimicrobial wheat endosperm specific protein. J Agric Technol, 2011,7:903-906.
[32] Phillips R L, Palombo E A, Panozzo J F, Bhave M. Puroindolines, Pin alleles, hordoindolines and grain softness proteins are sources of bactericidal and fungicidal peptides. J Cereal Sci, 2011,53:112-117.
[33] Nirmal R C, Furtado A, Wrigley C, Henry R J. Influence of gene expression on hardness in wheat. PLoS One, 2016,11:e0164746.
doi: 10.1371/journal.pone.0164746 pmid: 27741295
[34] Skinner M E, Uzilov A V, Stein L D, Mungall C J, Holmes I H. Jbrowse: a next-generation genome browser. Genome Res, 19:1630-1638.
pmid: 19570905
[35] Li Y, Mao X, Wang Q, Zhang J, Li X, Ma F, Sun F, Chang J, Chen M, Wang Y, Li K, Yang G X, He G. Overexpression of puroindoline agene in transgenic durum wheat (Triticum turgidum ssp. durum) leads to a medium-hard kernel texture. Mol Breed, 2014,33:545-554.
doi: 10.1007/s11032-013-9971-4
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!