欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1722-1733.doi: 10.3724/SP.J.1006.2020.04030

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究

张海(), 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升*()   

  1. 福建农林大学国家甘蔗工程技术研究中心 / 农业农村部福建甘蔗生物学与遗传育种重点实验室 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2020-02-10 接受日期:2020-04-15 出版日期:2020-11-12 网络出版日期:2020-04-27
  • 通讯作者: 徐景升
  • 作者简介:E-mail:zhanghai940410@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2018026)

Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein

ZHANG Hai(), LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng*()   

  1. Sugarcane Research & Development Center, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2020-02-10 Accepted:2020-04-15 Published:2020-11-12 Published online:2020-04-27
  • Contact: Jing-Sheng XU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31971991);the Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026)

摘要:

非光化学猝灭(non-photochemical quenching, NPQ)是高等植物主要的光保护调节机制, 光合系统II (Photosystem II, PSII)的PsbS亚基在NPQ起关键作用。甘蔗(Saccharum spp. hybrid)中PSII PsbS亚基应答甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)的侵染尚未见报道。本课题组在前期研究中克隆了甘蔗的PsbS亚基编码基因, 命名为ScPsbS, 该基因开放读码框(open reading frame, ORF)长度为798 bp, 编码长度为265个氨基酸的蛋白。生物信息学分析表明, ScPsbS为稳定的疏水性蛋白, 具有叶绿体定位信号, 有4个跨膜结构域; 具有典型的PsbS亚基结构域。系统进化树分析表明, ScPsbS在单子叶、双子叶以及单子叶的C3和C4植物中存在明显的分化。亚细胞定位分析表明, ScPsbS定位于叶绿体且与SCMV-6K2部分共定位于叶绿体。双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验进一步证实了ScPsbS与SCMV-6K2互作。实时荧光定量PCR分析发现, ScPsbS基因的表达具有明显的组织特异性, 在成熟叶片中相对表达量最高, 未成熟叶片和初衰叶中次之, 茎和根中几乎不表达; SCMV侵染对ScPsbS基因表达影响显著, ScPsbS基因在侵染早期显著上调, 侵染后期没有明显的差异。

关键词: 甘蔗, PsbS亚基, 甘蔗花叶病毒, 6K2, 光保护

Abstract:

Non-photochemical quenching (NPQ) is the main mechanism of photoprotective regulation in higher plants. The PsbS subunit of Photosystem II (PSII) plays a key role in NPQ. The involvement of PSII PsbS subunit in Sugarcane mosaic virus (SCMV) infection of sugarcane (Saccharum spp. hybrid) has not been reported. In the previous research, we cloned the coding sequence of the PsbS subunit from sugarcane and designated it as ScPsbS. ScPsbS had an open reading frame (ORF) length of 798 bp and encoded a protein of 265 aa. Bioinformatics analysis showed that ScPsbS was a stable hydrophobic protein with chloroplast localization signals and four transmembrane domains. The ScPsbS protein possesses a typical domain of PsbS protein. Phylogenetic tree analysis showed that ScPsbS was divergent between monocotyledons and dicotyledons, or C3 plants and C4 plants. Subcellular localization analysis showed that ScPsbS was located in chloroplasts and partially colocalized with SCMV-6k2 in chloroplasts. The interaction of ScPsbS with the SCMV-6K2 was further confirmed by bimolecular fluorescence complementation assays (BiFC). ScPsbS gene showed obvious tissue specificity in sugarcane tested by real-time quantitative PCR analysis. ScPsbS gene had highest expression in mature leaves, followed by immature leaves and leaves beginning to senesce, and hardly expressed in stems and roots. The expression of ScPsbS gene was significantly affected by SCMV infection, with significant upregulation in the early stage of SCMV infection, and no significant affection in the later stage of SCMV infection.

Key words: sugarcane, PsbS subunit, Sugarcane mosaic virus, 6K2, light protection

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScPsbS-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGCAGTCCATGCT 双分子荧光互补载体构建
221-ScPsbS-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACTCTTCGTCCTCGC Vector generation for BiFC
ScPsbS-qF CTCCATCATCGGCGAGATCATCAC 定量PCR
ScPsbS-qR GGCGGCGACGAAGAAGAAGAG Real-time-qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因
GAPDH-R
eEF-1α-F
eEF-1α-R
TCCTCAG GGTTCCTGATGCC
TTTCACACTTGGAGTGAAGCAGAT
GACTTCCTTCACAATCTCATCATAA
Reference gene
内参基因
Reference gene
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV

图1

基于SWISS-MODEL的ScPsbS、ZmPsbS、OsPsbS和AtPsbS蛋白三维建模 ZmPsbS (NP_001105228.2): 玉米的PsbS亚基; OsPsbS (XP_ 015621169.1): 水稻的PsbS亚基; AtPsbS (NP_973971.1): 拟南芥的PsbS亚基。"

图2

ScPsbS基因的核苷酸序列及其编码的氨基酸序列 *: 终止密码子。黑色下画线部分为转运肽; 红色下画线部分为PsbS结构域; 红色标记的氨基酸为靶向叶绿体前体蛋白切割位点的保守结构域。↓: 切割位点。"

图3

甘蔗ScPsbS与其他单子叶植物PsbS蛋白的氨基酸序列比对 高粱: SbPsbS (XP_002456704.1); 玉米: ZmPsbS (NP_ 001105228.2); 黍: PhPsbS (XP_025818476.1); 谷子: SiPsbS (XP_ 004970722.1); 水稻: OsPsbS (XP_015621169.1); 二穗短柄草: BdPsbS (XP_003564708.1); 小麦: TaPsbS (CDM85166.1)。"

图4

ScPsbS与其他物种PsbS蛋白的系统进化树分析"

图5

ScPsbS-YFP在本氏烟表皮细胞中的定位 A: ScPsbS-YFP亚细胞定位; B: ScPsbS-YFP和6K2-CFP亚细胞共定位。白色箭头表示叶绿体, 标尺= 25 μm。"

图6

BiFC检测ScPsbS与SCMV-6K2的互作 A: YC融合于ScPsbS的C末端, YN融合于SCMV-6K2的N末端; B: YN融合于ScPsbS的N末端, YC融合于SCMV-6K2的C末端。将YN-6K2和ScPsbS-YC(A), YN-ScPsbS和6K2-YC(B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。标尺= 25 μm。"

图7

ScPsbS基因在甘蔗不同组织中的表达模式 误差线为每组处理的标准误差(n = 3)。LR: 心叶; +1 L: 正一叶; +7 L: 正七叶; +3 I: 第三节间; +8 I: 第八节间; R: 根。"

图8

ScPsbS基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。"

[1] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议—基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4):65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand Sugar Industry. Sugar Canesugar, 2015, ( 4):65-72 (in Chinese with English abstract).
[2] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018,14(11):40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018,14(11):40-46 (in Chinese with English abstract).
[3] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8):147-152 (in Chinese with English abstract).
[4] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, (4):55-58.
Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, (4):55-58 (in Chinese with English abstract).
[5] 周晚秋, 娄春, 何子林, 傅峻涛. 巴西生物燃料技术现状与发展. 中外能源, 2017,22(6):24-31.
Zhou W Q, Lou C, He Z L, Fu J T. Status quo and development of Brazilian biofuel technologies. Sino-global Energy, 2017,22(6):24-31 (in Chinese with English abstract).
[6] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015,46:609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015,46:609-613 (in Chinese with English abstract).
[7] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane-Sorghum mosaic virus interaction. Trop Plant Biol, 2018,11:163-176.
[8] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1):11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1):11-16 (in Chinese with English abstract).
[9] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that the Sugarcane mosaic virus subgroup consists of four distinct potyviruses by using peptide profiles of coat proteins. Arch Virol, 1992,5:363-373.
[10] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Langham M A C. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal. Phytopathology, 1989,79:223-229.
[11] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017,44:363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017,44:363-370 (in Chinese with English abstract).
[12] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018,48:389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018,48:389-394 (in Chinese with English abstract).
[13] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017,33(7):22-28.
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017,33(7):22-28 (in Chinese with English abstract).
[14] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus-long history but still a threat to industry. Crop Prot, 2012,42:74-78.
[15] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008,153:1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[16] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[17] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒 HC-Pro、P3N-PIPO、CP 和 VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016,31(1):83-89.
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016,31(1):83-89 (in Chinese with English abstract).
[18] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus(SCSMV). Trop Plant Biol, 2017,10:45-55.
[19] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015,466:312-318.
doi: 10.1016/j.bbrc.2015.09.015 pmid: 26362180
[20] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus:Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998,10:323-332.
doi: 10.1006/mpev.1998.0535 pmid: 10051385
[21] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991,32:269-296.
pmid: 1657820
[22] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in indonesia: distribution, characterisation, yield losses and management approaches. Sugar Tech, 2014,16:392-399.
doi: 10.1007/s12355-013-0279-9
[23] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus(SCSMV). Arch Virol, 2011,156:2101-2104.
doi: 10.1007/s00705-011-1090-0 pmid: 21927898
[24] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010,40:432-439.
doi: 10.1007/s11262-010-0457-8
[25] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2):8-11.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Evaluation of similarity-difference analysis for sugarcane varieties. Sugar Crops China, 2006, (2):8-11 (in Chinese with English abstract).
[26] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence ofSugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[27] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell CA, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus(SCMV). Photosynth Res, 2020 doi: 10.1007/s11120-019- 00706-w.
doi: 10.1007/s11120-020-00764-5 pmid: 32529501
[28] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus(SCMV) in Nigeria. Plant Dis, 2019,103:818-824.
pmid: 30806574
[29] Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74:157-175.
doi: 10.1016/s0168-1702(01)00220-9 pmid: 11226583
[30] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
doi: 10.1093/nar/gkw441 pmid: 27185887
[31] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Sci Rep, 2015,16:995-1004.
[32] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017,7:9868. doi: 10.1038/ s41598-017-10497-6.
doi: 10.1038/s41598-017-10497-6 pmid: 28852157
[33] Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992,73:1-16.
doi: 10.1099/0022-1317-73-1-1 pmid: 1730931
[34] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008,105:5897-5902.
pmid: 18408156
[35] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019,225:2122-2139.
pmid: 31657467
[36] Cabanillas D, Jiang J, Movahed N, Germain H, Yamaji Y, Zheng H, Laliberté J. Turnip mosaic virus uses the SNARE protein VTI11 in an unconventional route for replication vesicle trafficking. Plant Cell, 2018,30:2594-2615.
doi: 10.1105/tpc.18.00281 pmid: 30150314
[37] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
doi: 10.1104/pp.17.01484 pmid: 29089395
[38] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
pmid: 30538165
[39] Wei T, Wang A. Biogenesis of cytoplasmic membranous vesicles for plant Potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol, 2008,82:12252-12264.
doi: 10.1128/JVI.01329-08 pmid: 18842721
[40] Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J Virol, 2015,89:6695-6710.
doi: 10.1128/JVI.00503-15 pmid: 25878114
[41] Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberté J. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol, 2009,83:10460-10471.
doi: 10.1128/JVI.00819-09 pmid: 19656892
[42] Nicolas O, Laliberté J. The complete nucleotide sequence of turnip mosaic potyvirus RNA. J Gen Virol, 1992,73:2785-2793.
doi: 10.1099/0022-1317-73-11-2785 pmid: 1431807
[43] Beauchemin C, Laliberté J F. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. J Virol, 2007,81:10905-10913.
pmid: 17670821
[44] Beauchemin C, Boutet N, Laliberté J F. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J Virol, 2007,81:775-782.
pmid: 17079311
[45] Dufresne P J, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberté J F, Fortin M G. Heat shock 70 protein interaction withTurnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 2008,374:217-227.
doi: 10.1016/j.virol.2007.12.014 pmid: 18222516
[46] Laliberté J F, Zheng H. Viral manipulation of plant host membranes. Annu Rev Virol, 2014,1:237-259.
pmid: 26958722
[47] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013,4:351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[48] Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
doi: 10.1371/journal.ppat.1003378 pmid: 23696741
[49] Balachandran S, Hurry V M, Kelley S E, Osmond C B, Robinson S A, Rohozinski J, Sims D A. Concepts of plant biotic stress. Some insights into the stress physiology of virus- infected plants, from the perspective of photosynthesis. Physiol Plant, 1997,100:203-213.
doi: 10.1111/ppl.1997.100.issue-2
[50] 刘家勇, 赵培方, 赵俊, 崔洁, 陈学宽, 夏红明, 杨昆, 吴才文. 甘蔗花叶病对甘蔗叶片叶绿素含量的影响. 中国糖料, 2011, (4):7-9.
Liu J Y, Zhao P F, Zhao J, Cui J, Chen X K, Xia H M, Yang K, Wu C W. Effect ofSugarcane mosaic virus on chlorophyll content of sugarcane leaves. Sugar Crops China, 2011, (4):7-9 (in Chinese with English abstract).
[51] Farooq T, Liu D, Zhou X, Yang Q. Tomato yellow leaf curl China virus impairs photosynthesis in the infected Nicotiana benthamiana with βC1 as an aggravating factor. Plant Pathol J, 2019,35:521-529.
doi: 10.5423/PPJ.OA.04.2019.0120 pmid: 31632226
[52] Funayama S, Hikosaka K, Yahara T. Effects of virus infection and growth irradiance on fitness components and photosynthetic properties of Eupatorium makinoi (Compositae). Am J Bot, 1997,84:823-829.
pmid: 21708634
[53] Song X S, Wang Y J, Mao W H, Shi K, Zhou Y H, Nogues S, Yu J Q. Effects of Cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiol Plant, 2009,135:246-257.
doi: 10.1111/j.1399-3054.2008.01189.x pmid: 19140890
[54] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Integr Agric, 2019,18:2294-2301.
doi: 10.1016/S2095-3119(19)62572-4
[55] Lei R, Jiang H, Hu F, Yan J, Zhu S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep, 2017,36:327-341.
doi: 10.1007/s00299-016-2083-y pmid: 27904946
[56] Moller I, Jensen P, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 2007,58:459-481.
doi: 10.1146/annurev.arplant.58.032806.103946 pmid: 17288534
[57] Li Z, Wakao S, Fischer B B, Niyogi K K. Sensing and responding to excess light. Annu Rev Plant Biol, 2009,60:239-260.
doi: 10.1146/annurev.arplant.58.032806.103844 pmid: 19575582
[58] Pospísil P, Arató A, Krieger-Liszkay A, Rutherford A W. Hydroxyl radical generation by photosystem II. Biochemistry, 2004,43:6783-6792.
doi: 10.1021/bi036219i pmid: 15157112
[59] Niyogi K K, Truong B T. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol, 2013,16:307-314.
pmid: 23583332
[60] Holt N E, Fleming G R, Niyogi K K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry, 2004,43:8281-8289.
doi: 10.1021/bi0494020 pmid: 15222740
[61] Takahashi S, Badger M R. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci, 2011,16:53-60.
doi: 10.1016/j.tplants.2010.10.001 pmid: 21050798
[62] Li X P, Björkman O, Shih C, Grossman A R, Rosenquist M, Jansson S, Niyogi K K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 2000,403:391-395.
doi: 10.1038/35000131 pmid: 10667783
[63] Li X P, Gilmore A M, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi K K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem, 2004,279:22866-22874.
doi: 10.1074/jbc.M402461200 pmid: 15033974
[64] Correagalvis V, Poschmann G, Melzer M, Kai S, Jahns P. PsbS interactions involved in the activation of energy dissipation inArabidopsis. Nat Plants, 2016,2:15225.
pmid: 27249196
[65] Niyogi K K, Li X P, Rosenberg V, Jung H S. Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot, 2005,56:375-382.
doi: 10.1093/jxb/eri056 pmid: 15611143
[66] Johnson M P, Ruban A V. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J, 2010,61:283-289.
doi: 10.1111/j.1365-313X.2009.04051.x pmid: 19843315
[67] Ruban A V, Johnson M P. Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys, 2010,504:78-85.
pmid: 20615387
[68] Allen J F. Botany . State transitions: a question of balance. Science, 2003,299:1530-1532.
doi: 10.1126/science.1082833 pmid: 12624254
[69] 孙瑞雪, 杨春虹. 光系统II的结构与功能以及光合膜对环境因素的响应机制. 生物物理学报, 2012,28:537-548.
doi: 10.3724/SP.J.1260.2012.20107
Sun R X, Yang C H. Structure and function of photosystem II and the environmental response of photosynthetic membrane. Acta Biophys Sin, 2012,28:537-548 (in Chinese with English abstract).
[70] Gerotto C, Franchin C, Arrigoni G, Morosinotto T. In vivo identification of photosystem II light harvesting complexes interacting with PHOTOSYSTEM II SUBUNIT S. Plant Physiol, 2015,168:1747-1761.
doi: 10.1104/pp.15.00361 pmid: 26069151
[71] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
doi: 10.3390/ijms20163867
[72] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[73] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其甘蔗花叶病毒VPg互作研究. 作物学报, 2019,10:1478-1487.
doi: 10.3724/SP.J.1006.2019.94002
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,10:1478-1487 (in Chinese with English abstract).
[74] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014,34:676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014,34:676-681 (in Chinese with English abstract).
[75] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
doi: 10.1038/srep07042 pmid: 25391499
[76] Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol, 2015,22:729-735.
pmid: 26258636
[77] Funk C, SchrödChenger W P, Green B R, Renger G, Andersson B. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett, 1994,342:261-266.
doi: 10.1016/0014-5793(94)80513-x pmid: 8150081
[78] Wedell N, Klein R, Ljungberg U, Andersson B, Herrmann R G. The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. FEBS Lett, 1992,314:61-66.
pmid: 1360412
[79] Daskalakis V, Papadatos S. The photosystem II subunit S under stress. Biophys J, 2017,113:2364-2372.
doi: 10.1016/j.bpj.2017.09.034 pmid: 29211990
[80] Zhang M Q, Cheng R K, Luo J, Lu J L, Xu J S. Analyses for inheritance and combining ability of photochemical activities measured by chlorophyll fluorescence in the segregating generation of sugarcane. Field Crops Res, 2000,65:31-39.
doi: 10.1016/S0378-4290(99)00069-6
[81] 罗俊, 张华, 陈由强, 徐景升, 林彦铨, 陈如凯. 能源甘蔗不同叶位叶片形态、光合气体交换及其与产量关系. 应用与环境生物学报, 2006,12:754-760.
Luo J, Zhang H, Chen Y Q, Xu J S, Lin Y Q, Chen R K. Relationship of energy sugarcane leaf form s and gas exchange with its yield. Chin J Appl Environ Biol, 2006,12:754-760 (in Chinese with English abstract).
[82] 王勤南, 许环映, 陈俊吕, 刘壮, 常海龙, 周峰, 金玉峰, 胡后祥, 符成, 刘少谋. 甘蔗叶片叶绿素荧光参数日变化研究. 热带农业科学, 2014,34(10):24-27.
Wang Q N, Xu H Y, Chen J L, Liu Z, Chang H L, Zhou F, Jin Y F, Hu H X, Fu C, Liu S M. Diurnal variation of chlorophyll fluorescence parameters of sugarcane leaf. Chin J Trop Agric, 2014,34(10):24-27 (in Chinese with English abstract).
[83] 张木清, 吕建林. 甘蔗光合速度的日变化及其对光温的响应. 福建农业大学学报(自然科学版), 1998,27:397-401.
Zhang M Q, Lyu J L. Diurnal variation of photosynthetic rate in sugarcane and its responses to light and temperature. J Fujian Agric For Univ (Nat Sci Edn), 1998,27:397-401 (in Chinese with English abstract).
[84] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[85] Wittmann S, Chatel H, Fortin M G, Laliberté J F. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92.
doi: 10.1006/viro.1997.8634 pmid: 9234949
[86] Geng C, Yan Z Y, Cheng D J, Liu J, Tian Y P, Zhu C X, Wang H Y, Li X D. Tobacco vein banding mosaic virus 6K2 protein Hijacks NbPsbO1 for virus replication. Sci Rep, 2017,7:43455.
pmid: 28230184
[87] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[88] Ng J C K, Perry K L. Transmission of plant viruses by aphid vectors. Mol Plant Pathol, 2004,5:505-511.
doi: 10.1111/j.1364-3703.2004.00240.x pmid: 20565624
[89] Nault L R. Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am, 1997,90:521-541.
doi: 10.1093/aesa/90.5.521
[90] Salvaudon L, Mescher M C. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc Biol Sci, 2013,280:20122959.
pmid: 23407835
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[8] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[9] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[10] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[11] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[12] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[13] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[14] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[15] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!