欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1734-1742.doi: 10.3724/SP.J.1006.2020.02009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻包穗突变体sui2的遗传分析和基因精细定位

孙琦1(), 赵志超2(), 张瑾晖2, 张锋2, 程治军2,*(), 邹德堂1,*()   

  1. 1 东北农业大学寒地粮食作物种质创新与生理生态教育部重点实验室, 黑龙江哈尔滨 150030
    2 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2020-02-14 接受日期:2020-06-02 出版日期:2020-11-12 网络出版日期:2020-06-22
  • 通讯作者: 程治军,邹德堂
  • 作者简介:孙琦, E-mail:517596634@qq.com|赵志超, E-mail:zhaozhichao@caas.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31871603)

Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.)

SUN Qi1(), ZHAO Zhi-Chao2(), ZHANG Jin-Hui2, ZHANG Feng2, CHENG Zhi-Jun2,*(), ZOU De-Tang1,*()   

  1. 1 Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-02-14 Accepted:2020-06-02 Published:2020-11-12 Published online:2020-06-22
  • Contact: Zhi-Jun CHENG,De-Tang ZOU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871603)

摘要:

水稻穗下倒一节间的伸长和发育对株型的形成起着重要作用, 在水稻不育系中常见的包穗现象是由于穗下倒一节间的伸长和发育受阻造成的, 深入研究水稻包穗分子机制能为水稻不育系株型的改良提供一定的理论意义。我们在粳稻Kitaake的组织培养后代中获得了1个包穗突变体sui2, 其穗部被剑叶叶鞘包裹程度处于半包裹和全包裹之间, 倒一节间严重缩短细胞学形态分析表明, 倒一节间的缩短是由于节间薄壁细胞的伸长生长不足造成的。通过对sui2与IRAT129杂交后代分析表明, sui2为单基因显性突变。对该组合F2的608个正常单株遗传定位分析结果表明, 候选基因SUI2被精细定位在4号染色体长臂端, 由InDel标记S4-14.1和S4-14.2界定的110 kb的区域内。该区间内的编码基因在基因组序列水平上无差异, 而基因LOC_Os04g39430表达量在突变体中升高了264倍, 该基因编码1个参与油菜素内酯(brassinolide, BR)合成的细胞色素P450蛋白, 是D11的等位基因。qRT-PCR分析结果表明, 突变体中BR信号途径的基因表达量增高, 预示着BR信号途径的基因可能参与了穗下倒一节间的伸长和发育的调控。

关键词: 水稻, 包穗, 精细定位, SUI2, BR信号途径的基因

Abstract:

The elongation and development of rice uppermost internode plays an important role in plant architecture development. In general, the sheathed panicle phenomenon in rice sterility line is caused by the elongation and development hindrance of the uppermost internode. The study on molecular mechanisms underlying sheathed panicle would be helpful for improving plant architecture in sterility line. At the present study, we reported the study on a sheathed panicle mutant, named sui2, originated from a tissue-culture progeny. Its uppermost internode severely shortened, resulted in its pancleen closed by flag leaf sheath, without significantly length alternation at other internodes. The cytological analysis demonstrated that the shorten of the uppermost internode is caused by insufficient elongation of the parenchyma cells. Genetic analysis of the progeny derived from the cross-combination of sui2 and IRAT129 revealed that sui2 is a single gene dominant mutant. Linkage analysis to 608 normal individuals from F2 generation showed that SUI2 was located in a 110 kb region delimited by InDel marks S4-14.1 and S4-14.2 on the end of chromosome 4 long arm. The annotated genes on this region did not display any difference in genomic sequence, while the expression level of LOC_Os04g39430, encoding a cytochrome P450 protein and an allele of D11, increased by 264 times expression amount in mutant. Analysis of qRT-PCR for several crucial genes on BR (brasssinolide) signaling pathway showed that in mutant the expression level of all these genes increased, indicating that genes in BR signaling pathway may be involved in the regulation to the elongation and development of uppermost internode.

Key words: rice, sheathed panicle, fine mapping, SUI2, BR signaling pathway

表1

新开发的多态性InDel和SNP引物"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
S4-13 CGACGATATCCGTGCATCACC ACGATTGCATCTGCGTCACACC
S4-14 AGTGATGCACTTCTGTTTGTCC GGTCCTCTTGTTCAAGTCAAACC
S4-14.1 AGAAGACGACGACTTGGACA TAGACGACCTGGGTTCGAAG
S4-14.2 AAATTCCACATGCCAATTCC ATTGAGGCTCGATCCATGAC
S4-14.3 CTTTTGCGAGGGGTCTCATA CATGGGGCTTTTGCACTAAT
S4-14.4 GCCACAAACTCCCAGCTAAC GTGGAGACTGGAGAGGTGGA
S4-15 ACCTTTTCTTGGCTTGAGGG GCTTTTGCTACTTTTGGGGG

表2

qRT-PCR所用引物"

引物名
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
LOC_Os04g39360 TGATCTCGATGGCGATCACC GCTCCTCGCAGTAGACCATC
LOC_Os04g39380 CTAATTCATCGCCACGTACAAACG TGATCACCGGCTATCAACAGAAAC
LOC_Os04g39410 CGATTGCCATGAGTTCACCAAGC TGGCGTCTCGGACCACAATTTC
LOC_Os04g39420 GCGGGTATACGCAGGTTTATGC ACTCGTTGAAGATGGCCACAGC
LOC_Os04g39430 TGAGGTTCCTCAGTCCTCATGC AAACACCCTCCCATACCTGGAG
LOC_Os04g39440 TGTGTCACACTGCCACTTACCC TGGAGCAACTACGTTTCAGTCAGC
LOC_Os04g39444 CCAAGATGAAGCTCGTCAGGTTTC AGTCTTCAAGTGGGTGTTCATGC
LOC_Os04g39450 GGCCTTCTATGCATCTCTGAGC TGATGGAGTTGCTGCCATCTTC
LOC_Os04g39470 AGCTCACGAATCACATGGTGTAGC ATGTGGATCATGGCGTGCTTCG
LOC_Os04g39489 TCCTCTTGGAAATTCAGGACACAC GGACGCCTTCTTCATCGTCTTG
BRD1 ATTATGATCCATTCCTGTACCCTG TCTTCCTCCCATCTGTATTGAGT
BRD2 TCAAGGCCACACAGGGTGAATC GCACAGCCACAGTGGATAAACCTC
DWARF4 GATGGGCTCTGAAACAATCTAACCTT TCCCCTCTTAGCCTTTGTCTCCTT
BAK1 ACTCTGGTCAATCCGTGCACTTG AGTGCAGCATTCCCAAGATCAAC
BRI1 TCGTTGGCTCAGTTCTTGGAGAG TCTCTTGGCTAGAACAAGAAGTGC
BU1 CGACGACGAAGCTGCTGAAGGA AGGAGGCTGCGGATGATCTCG
LIC1 CTGCACCACTTGCTGCCCCTAC TGTTCCCAACAGATTCCTCAAACATC
TUD1 GTCCGCCTCATCCGCATACTC CGCACCGATGCTAACAATCAAAC
BZR1 CGTTCCGGCACCCCTTCTTC TGGCGTCACCCTCCCCTTGT
Ubiquitin AACCAGCTGAGGCCCAAGA ACGATTGATTTAACCAGTCCATGA

图1

野生型与突变体sui2的表型比较 A: 野生型野生型(左)与突变体(右)成熟期表型; B: 成熟期野生型(左)与突变体(右)的1个典型的包穗的表型比较; C: 成熟期野生型(左)与突变体(右)的各节间表型比较, 自左至右为倒一、二、三、四节间; D, E: 野生型(D)和突变体(E)倒一节间横切面细胞学比较; F: 野生型和突变体倒一节间纵切面细胞学比较; G, H: 野生型(G)与突变体(H)苗期倒一和倒二叶叶片夹角。标尺: (A) 15 cm; (B) 5 cm; (C) 5 cm, (D, E) 200 μm; (F) 50 μm。"

表3

野生型Kitaake和突变体sui2农艺性状比较"

农艺性状Agronomic trait Kitaake sui2 P
株高Plant height (cm) 63.73±2.55 43.08±3.79 *P < 0.05
分蘖数Tiller number 14.40±2.01 25.00±3.43 **P < 0.01
每穗粒数Number of spikelets per panicle 42.75±8.70 27.10±3.41 **P < 0.01
千粒重1000-grain weight (g) 4.415±0.02 4.852±0.06 **P < 0.01
结实率Seed setting rate (%) 0.969±0.05 0.837±0.08 **P < 0.01
粒长Seed length (mm) 7.06±0.33 8.10±0.22 **P < 0.01
粒宽Seed weight (mm) 3.26±0.10 3.47±0.12 **P < 0.01
粒厚Seed thickness (mm) 2.20±0.07 2.14±0.07 **P < 0.01
剑叶宽Flag leaf length (cm) 1.10±0.08 0.90±0.08 **P < 0.01
倒一节间长Length of the uppermost internode (cm) 29.61±3.27 14.68±2.57 **P < 0.01

图2

野生型和突变体节间组织薄壁细胞体积和数目比较 A: 野生型和突变体倒一节间纵切面薄壁细胞长度及宽度; B: 野生型和突变体倒一节间横截面半径含有的细胞数目。* 表示在P<0.05水平差异显著; ** 表示在P < 0.01水平差异显著。"

图3

候选基因SUI2基因的图位克隆示意图 A: SUI2初步定位在4号染色体标记S4-14和S4-15之间; B: SUI2被精细定位在S4-14.1和S4-14.2之间的110 kb范围内; C: SUI2精细定位区间内包含的14个基因和2个转座子。横线的上方为定位所用的分子标记, 横线下方为交换单株数。"

表4

定位区间内基因的功能注释"

基因名称
Locus name
基因注释
Gene annotation
LOC_Os04g39360 Heavy metal transport/detoxification protein, putative, expressed
LOC_Os04g39370 Heavy metal associated domain containing protein, expressed
LOC_Os04g39380 Heavy metal transport/detoxification protein, putative, expressed
LOC_Os04g39390 Retrotransposon protein, putative, unclassified, expressed
LOC_Os04g39400 Retrotransposon protein, putative, unclassified, expressed
LOC_Os04g39410 Pentatricopeptide, putative, expressed
LOC_Os04g39420 6-phosphofructokinase 2, putative, expressed
LOC_Os04g39430 D11; cytochrome P450; small grain 4; clustered spikelets 4
LOC_Os04g39440 Ras-related protein, putative, expressed
LOC_Os04g39444 LSM domain containing protein, expressed
LOC_Os04g39450 Expressed protein
LOC_Os04g39460 NBS-LRR type disease resistance protein, putative, expressed
LOC_Os04g39470 Transcription factor with an MYB domain
LOC_Os04g39489 Amino acid transporter, putative, expressed
LOC_Os04g39510 Expressed protein
LOC_Os04g39520 ZOS4-08-C2H2 zinc finger protein, expressed

图4

候选基因的qRT-PCR检测"

图5

SUI2在不同组织中的表达量变化情况"

图6

油菜素内酯相关基因在野生型和突变体中的表达量变化情况 A: 野生型及sui2的茎秆中油菜素内酯合成相关基因的表达水平; B: 野生型及sui2的茎秆中油菜素内酯信号相关基因的表达水平。*表示在P < 0.05水平差异显著; **表示在P < 0.01水平差异显著。"

[1] 邓华凤. 中国杂交粳稻研究现状与对策. 杂交水稻, 2006,21(1):1-6.
Deng H F. Status and technical strategy on development of japonica hybrid rice in China. Hybrid Rice, 2006,21(1):1-6 (in Chinese).
[2] 朱斌成. 施用“920”对杂交水稻制种父母本农艺性状的影响. 江西农业科技, 1988, (6):4-6.
Zhu B C. Effects of “920” on parental agronomic traits of hybrid rice seed production. Jiangxi Agric Sci Tech, 1988, (6):4-6 (in Chinese).
[3] 李安祥, 李慈厚, 丁克信, 严国红. 杂交制种稻粒黑粉病的综合防治. 江苏农业科学, 1995, (4):34-36.
Li A X, Li C H, Ding K X, Yan G H. Comprehensive control of rice seed powdery mildew of hybrid seed production. Jiangsu Agric Sci, 1995, (4):34-36 (in Chinese).
[4] Li J, Yuan L P. Hybrid rice: genetics, breeding, and seed Production. In: Janick J ed. Plant Breeding Reviews. Springer, 2010. pp15-158.
[5] Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice(Oryza sativa L.). Chin Sci Bull, 2011,56:1476-1480.
[6] Heu M H, Shrestha G. Genetic analysis of sheathed panicle in a Nepalese rice cultivar Gamadi. Manila: Rice Genet I: (In 2 Parts), 1986. pp 317-322.
[7] Kinoshita T. Report of committee on gene symbolization, nomenclature, and linkage groups. Rice Genet Newsl, 1995,12:13-74.
[8] Maekawa M. Allelism test for the genes responsible for sheathed panicle. Rice Genet Newsl, 1986,3:62-63.
[9] Shrestha G L, Heu M H. Gene location for “Gamadiness” in rice (Oryza sativa L.). Korean J Crop Sci, 1984,29:128-135.
[10] Yin H F, Gao P, Liu C W, Yang J, Liu Z C, Luo D. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta, 2013,237:15-27.
pmid: 22956125
[11] Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z, He Y Z, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011,77:475.
pmid: 21928114
[12] 刘庄, 罗丽娟. 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报, 2006,22(12):409-412.
Liu Z, Luo L J. Anatomical studies on the stem of rice of dwarf and sheathed panicle. Chin Agric Sci Bull, 2006,22(12):409-412 (in Chinese with English abstract).
[13] 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金. 一种水稻全包穗突变体的发现及初步分析. 中国农学通报, 2008,24(6):222-226.
Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. Discovery and preliminary analysis of a rice mutant with fully sheathed panicle. Chin Agric Sci Bull, 2008,24(6):222-226 (in Chinese with English abstract).
[14] 朱克明. 水稻包穗基因 SHP6 的遗传与定位. 扬州大学硕士学位论文, 2006.
Zhu K M. Genetic Analysis and Mapping of SHP6 Gene in Rice . MS Thesis of Yangzhou University, Yangzhou, Jiangsu,China, 2006 (in Chinese with English abstract).
[15] Ma J, Cheng Z J, Chen J, Shen J B, Zhang B C, Ren Y L, Ding Y, Zhou Y H, Zhang H, Zhou K N, Wang J L, Lei C L, Zhang X, Guo X P, Gao H, Bao Y Q, Wan J M. Phosphatidylserine synthase controls cell elongation especially in the uppermost internode in rice by regulation of exocytosis. PLoS One, 2016,11:e0153119.
doi: 10.1371/journal.pone.0153119 pmid: 27055010
[16] Maekawa M. Genes linked with d-2 in rice. Jpn J Breed, 1992,42:212-213.
[17] Lestari P, Koh H J. Development of new CAPS/dCAPS and SNAP markers for rice eating quality. HAYATI J Biosci, 2013,20:15-23.
[18] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790.
pmid: 15705958
[19] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012,7:e30798.
doi: 10.1371/journal.pone.0030798 pmid: 22292043
[20] Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005,17:2243-2254.
[21] Choe S, Dilkes B P, Fujioka S, Takatsuto S, Sakurai A, Feldmann K A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 1998,10:231-243.
pmid: 9490746
[22] Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002,110:203-212.
doi: 10.1016/s0092-8674(02)00814-0 pmid: 12150928
[23] He J X, Gendron J M, Sun Y, Gampala S S, Gendron N, Sun C Q, Wang Z Y. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005,307:1634-1638.
doi: 10.1126/science.1107580 pmid: 15681342
[24] Zhang C, Xu Y, Guo S, Zhu J Y, Qing H, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012,8:e1002686.
pmid: 22570626
[25] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-Loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 151:669-680.
pmid: 19648232
[26] Hu X, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B, Li J M. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet, 2013,9:e1003391.
doi: 10.1371/journal.pgen.1003391
[27] Wu Y Z, Fu Y Z, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotech J, 2016,14:377-386.
[28] Shi J, Dong A, Shen W H. Epigenetic regulation of rice flowering and reproduction. Front Plant Sci, 2015,5:803.
pmid: 25674094
[29] Heard E, Martienssen R A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 2014,157:95-109.
doi: 10.1016/j.cell.2014.02.045 pmid: 24679529
[30] Shi Z Y, Rao Y C, Xu J, Hu S K, Fang Y C, Yu H P, Pan J J, Liu R F, Ren D Y, Wang X H, Zhu Y Z, Li Z, Dong G J, Zhang G H, Zeng D L, Guo L B, Hu Z, Qian Q. Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Sci Bull, 2015,60:905-915.
doi: 10.1007/s11434-015-0798-8
[31] Guo M, Yang Y H, Liu M, Meng Q C, Zeng X H, Dong L X, Tang S Z, Gu M H, Yan C J. Clustered spikelets 4, encoding a putative cytochrome P450 protein CYP724B1, is essential for rice panicle development. Chin Sci Bull, 2014,59:4050-4059.
doi: 10.1007/s11434-014-0568-z
[32] Tong H, Chu C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018,23:1016-1028.
doi: 10.1016/j.tplants.2018.08.007 pmid: 30220494
[33] Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006,18:442-456.
doi: 10.1105/tpc.105.038455 pmid: 16399803
[34] Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006,47:181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061
[35] Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol, 2004,55:687-700.
doi: 10.1007/s11103-004-1692-y pmid: 15604710
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!