欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1690-1702.doi: 10.3724/SP.J.1006.2020.02006

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响

姚姝1(), 张亚东1, 刘燕清1, 赵春芳1, 周丽慧1, 陈涛1, 赵庆勇1, 朱镇1, Balakrishna Pillay2,*, 王才林1,*()   

  1. 1 江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心 / 国家水稻改良中心南京分中心, 江苏南京 210014
    2 夸祖鲁-纳塔尔大学(西维尔校区)农业工程科学院生命科学系, 南非夸祖鲁-纳塔尔省德班市 4000
  • 收稿日期:2020-02-11 接受日期:2020-06-02 出版日期:2020-11-12 网络出版日期:2020-07-06
  • 通讯作者: Balakrishna Pillay,王才林
  • 作者简介:E-mail:rice19820911@hotmail.com
  • 基金资助:
    本研究由江苏省自然科学基金项目(BK20180302);江苏省农业科技自主创新基金项目(CX[18]1001);江苏省重点研发计划项目(BE2018357);江苏省农业重大新品种创制项目(PZCZ201703);国家现代农业产业技术体系建设专项(CARS-1-62);江苏省作物基因组学和分子育种重点实验室开放课题(PL201902)

Effects of SSIIa and SSIIIa alleles and their interaction on eating and cooking quality under Wxmp background of rice

YAO Shu1(), ZHANG Ya-Dong1, LIU Yan-Qing1, ZHAO Chun-Fang1, ZHOU Li-Hui1, CHEN Tao1, ZHAO Qing-Yong1, ZHU Zhen1, Balakrishna Pillay2,*, WANG Cai-Lin1,*()   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, Jiangsu, China
    2 School of Life Sciences, College of Agriculture, Engineering and Science at the University of KwaZulu-Natal (Westville Campus), Durban 4000, Natal, South Africa;
  • Received:2020-02-11 Accepted:2020-06-02 Published:2020-11-12 Published online:2020-07-06
  • Contact: Pillay Balakrishna,Cai-Lin WANG
  • Supported by:
    This study was supported by the Jiangsu Natural Science Foundation(BK20180302);the Jiangsu Agricultural Science and Technology Innovation Fund(CX[18]1001);the Jiangsu Key Research and Development Program(BE2018357);the Jiangsu Major New Varieties Creation Project(PZCZ201703);the Earmarked Fund of China Agriculture Research System(CARS-1-62);the Open Project of Key Laboratory of Jiangsu Crop Genomics and Molecular Breeding(PL201902)

摘要:

为了明确Wxmp基因背景下不同半糯粳稻品质差异的原因, 以淀粉合成酶基因SSIIaSSIIIa表现多态性而其他淀粉合成相关基因无多态性的武粳13和关东194 (Milky Princess)杂交后代衍生的64个半糯品系为材料, 分析了Wxmp基因背景下, SSIIaSSIIIa基因等位变异对直链淀粉含量(amylose content, AC)、胶稠度(gel consistency, GC)、糊化温度(gelatinization temperature, GT)及RVA谱特征值的影响。结果表明, SSIIaSSIIIa等位变异对AC、GC、GT和RVA谱特征值都有显著影响, 且2个基因间存在互作效应。SSIIa2SSIIIa2(2表示该基因来源于非半糯亲本武粳13)有使AC增高的趋势, 分别使AC提高1.87%和1.23%, 2年结果基本接近。单个SSIIaSSIIIa等位变异对GT无显著影响, 而基因型SSIIa1SSIIIa1(1表示该基因来源于半糯亲本关东194)的GT比SSIIa2SSIIIa2高1.34℃, 达显著水平, 表明2个基因的互作对GT有显著影响。GC在不同基因型间均存在极显著差异, SSIIa 2SSIIIa1可分别使GC增加8.74 mm和9.62 mm。从2个基因的互作效应来看, 基因型SSIIa2SSIIIa1的GC比基因型SSIIa1SSIIIa2SSIIa2SSIIIa2分别增加10.64 mm和16.95 mm。SSIIa2使最高黏度、热浆黏度、冷胶黏度、崩解值增加, 回复值和消减值下降; 而SSIIIa2的效应则相反。2个基因的互作效应, 最高黏度、热浆黏度和冷胶黏度均以SSIIa2SSIIIa1最大, 崩解值和回复值均以SSIIa2SSIIIa2最大, 消减值SSIIa2SSIIIa1最小。本研究结果为半糯粳稻蒸煮食味品质的改良提供了一定的理论依据。

关键词: 半糯粳稻, SSIIa, SSIIIa, 蒸煮食味品质, 等位基因效应, 互作

Abstract:

In order to explain the variation of eating and cooking quality (ECQ) in different semi-waxy rice lines with Wxmp allele, sixty-four semi-waxy lines with Wxmp were developed by crossing from Wujing 13 and Kantou 194 (Milky Princess). The polymorphism of markers between the two parents was detected in soluble starch synthesis genes SSIIa and SSIIIa but not in other starch synthesis related genes. Genetic effects of SSIIa and SSIIIa on the amylose content (AC), gel consistency (GC), gelatinization temperature (GT) and rapid visco analyzer (RVA) profile characteristics were analyzed in Wxmp rice lines. The results showed that SSIIa and SSIIIa had significant effects on the characteristic values of AC, GT, GC and RVA profile, and the interactive effects existed between the two genes. SSIIa2 and SSIIIa2 alleles (2 indicated that allele was derived from Wujing 13, the same as in the below) had a tendency to increase AC by 1.87% and 1.23%, respectively. This result was consistent in two years. There was no significant effect on GT for SSIIa and SSIIIa allelic variation, whereas the GT of SSIIa1SSIIIa1(1 indicated that the genes were derived from Kantou 194, the same as in the below) was significantly higher than that of SSIIa2SSIIIa2 by 1.34 °C. This indicated that GT was not significantly affected by single gene of SSIIa and SSIIIa but was remarkably influenced by the interaction of the two genes. The GC was significant varied among rice lines with different genotypes. The SSIIa2 and SSIIIa1 alleles could increase GC of 8.74 mm and 9.62 mm respectively. From the interaction of the two genes, the GC of SSIIa2SSIIIa1 genotype was 10.64 mm higher than the SSIIa1SSIIIa2 genotype, and was 16.95 mm higher than the SSIIa2SSIIIa2 genotype. The allele SSIIa2 increased the peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and breakdown viscosity (BDV), but decreased the consistency viscosity (CSV) and setback viscosity (SBV). However, the effect of allele SSIIIa2 was just the opposite, which decreased the PKV, HPV, CPV, BDV and increased CSV and SBV. For the combination of SSIIa and SSIIIa, SSIIa2SSIIIa1 genotype showed the largest values in PKV, HPV and CPV, SSIIa2SSIIIa2genotype showed the largest values in BDV and CSV, and SSIIa2SSIIIa1 genotype showed the least value in SBV. These results provide a theoretical basis for improving eating and cooking quality of semi-waxy japonica rice.

Key words: semi-waxy japonica rice, SSIIa, SSIIIa, eating and cooking quality, allelic effects, interaction

图1

来源于武粳13/关东194的64个半糯品系的培育"

表1

SSIIa、SSIIIa和Wxmp基因分子标记"

基因
Gene
引物序列
Primer sequences (5′-3′)
产物大小
Product size (bp)
退火温度
Annealing temperature (℃)
Wxmp O-F: ATGTTGTGTTCTTGTGTTCTTTGCAGGC 439/200 65
O-R: GTAGATCTTCTCACCGGTCTTTCCCCAA
I-F: GGGTGAGGTTTTTCCATTGCTACAATCG 439/292 65
I-R: GTCGATGAACACACGGTCGACTCAAT
SSIIa F: CTTTGATAGTTCGAATGGTT 251/248 55
(L22) R: CAATGTTTCTCCGTGATGAT
SSIIIa F: GAACTTGTGCCTTAAGCTGACTG 197/177 55
(L25) R: GGAATAGTAAGCCGAAGGACTT

图2

64个半糯品系Wxmp基因的检测 M: marker; 1~7: 部分半糯品系; 8: 关东194; 9: 武粳13。"

图3

64个半糯品系SSIIa (A)和SSIIIa (B)基因的检测 1~7: 部分半糯品系; 8: 关东194; 9: 武粳13。"

表2

来源于武粳13/关东194的64个半糯品系SSIIa和SSIIIa位点的基因型"

单基因型
Genotype
品系数
Number of lines
双基因型
Genotype
品系数
Number of lines
SSIIa1 23 SSIIa1SSIIIa1 10
SSIIa2 41 SSIIa1SSIIIa2 13
SSIIIa1 49 SSIIa2SSIIIa1 39
SSIIIa2 15 SSIIa2SSIIIa2 2

图4

64个半糯品系AC、GC、GT的频率分布 AC: 直链淀粉含量; GC: 胶稠度; GT: 糊化温度。"

图5

64个半糯品系RVA特征值的频率分布 PKV: 峰值黏度; HPV: 热浆黏度; CPV: 冷浆黏度; BDV崩解值; SBV消减值; CSV回复值。"

表3

64个半糯品系SSIIa和SSIIIa位点不同基因型不同年份AC的方差分析"

变异来源
Source of variance
自由度
df
平方和
SS
方差
MS
F
F-value
显著性Significance
年内区组间Repetitions 4 0.26 0.07 0.72 NS
年份间Years 1 2.42 2.42 26.37 **
品系间Lines 63 268.90 4.27 46.51 **
11基因型内Within 11 genotype 9 32.10 3.57 38.87 **
12基因型内Within 12 genotype 12 11.91 0.99 10.82 **
21基因型内Within 21 genotype 38 66.85 1.76 19.17 **
22基因型内Within 22 genotype 1 37.65 37.65 410.30 **
基因型间Genotype 3 120.39 40.13 437.32 **
11+12与21+22间 Between 11+12 and 21+22 genotype 1 53.24 53.24 580.17 **
11与12间Between 11 and 12 genotype 1 0.03 0.03 0.30 NS
21与22间Between 21 and 22 genotype 1 67.12 67.12 731.48 **
年份×品系Years × lines 63 60.30 0.96 10.43 **
试验误差Error 252 23.12 0.09
总变异Total variation 383 355.01

表4

2013年和2014年64个半糯品系SSIIa和SSIIIa位点不同等位基因对AC的效应"

位点
Locus
基因型
Genotype
2013年AC
AC in 2013
2014年AC
AC in 2014
平均
Mean
基因效应
Gene effect
SSIIa SSIIa1 9.05 8.85 8.95 1.87
SSIIa2 10.84 10.80 10.82
SSIIIa SSIIIa1 9.37 9.17 9.27 1.23
SSIIIa2 10.51 10.48 10.50

表5

64个半糯品系SSIIa和SSIIIa位点不同基因型不同年份AC的差异"

基因型
Genotype
2013 2014 两年平均
Mean of two years
年度差异
Difference between
2013 and 2014
平均
Mean
最大值
Max.
最小值
Min.
平均
Mean
最大值
Max.
最小值
Min.
11 9.06 A 10.70 7.60 8.80 A 10.31 7.67 8.93 A 0.26
12 9.03 A 9.89 8.21 8.89 A 9.66 8.47 8.96 A 0.14
21 9.68 B 11.54 8.08 9.53 B 10.75 7.32 9.61 B 0.15
22 11.99 C 13.96 10.02 12.07 C 13.64 10.49 12.03 C -0.08

表6

64个半糯品系SSIIa和SSIIIa位点不同基因型糊化温度与胶稠度的差异"

基因型
Genotype
糊化温度Gelatinization temperature 胶稠度Gel consistency
平均值
Mean (℃)
标准差
SD
变异系数
CV (%)
平均值
Mean (mm)
标准差
SD
变异系数
CV (%)
SSIIa1 70.59 1.26 1.78 73.78** 13.41 18.18
SSIIa2 70.36 1.01 1.44 82.53 10.28 12.46
SSIIIa1 70.49 1.11 1.57 81.47** 11.76 14.43
SSIIIa2 70.28 1.11 1.58 71.86 10.89 15.15
SSIIa1SSIIIa1 70.94 a 1.38 1.95 75.71 ab 16.29 21.52
SSIIa1SSIIIa2 70.33 ab 1.34 1.91 72.31 b 11.20 15.49
SSIIa2SSIIIa1 70.37 ab 1.02 1.45 82.95 a 10.05 12.12
SSIIa2SSIIIa2 69.60 b 1.21 1.89 66.00 b 10.12 15.21

表7

64个半糯品系SSIIa和SSIIIa位点不同基因型RVA特征值的差异"

基因型
Genotype
最高黏度
PKV
热浆黏度
HPV
冷胶黏度
CPV
崩解值
BDV
回复值
CSV
消减值
SBV
SSIIa1 2495.0** 1438.0** 2104.8* 1056.9** 666.7* -390.2**
SSIIa2 2939.4 1651.1 2285.4 1288.3 634.3 -654.0
SSIIIa1 2828.4* 1589.7 2227.5 1238.8* 637.8* -600.9**
SSIIIa2 2597.6 1516.1 2191.4 1081.4 675.3 -406.1
SSIIa1SSIIIa1 2383.5 C 1333.2 B 1996.5 b 1050.3 B 663.3 B -387.0 a
SSIIa1SSIIIa2 2580.7 BC 1518.8 AB 2188.2 ab 1062.0 B 669.4 B -392.6 a
SSIIa2SSIIIa1 2942.5 A 1655.4 A 2286.7 a 1287.1 A 631.3 B -655.8 b
SSIIa2SSIIIa2 2816.0 AB 1482.0 AB 2234.0 ab 1334.0 A 752.0 A -582.0 b

图6

SSIIa和SSIIIa位点不同基因型间的互作 AC: 直链淀粉含量。"

表8

不同亲本基因型背景下SSIIa和SSIIIa的遗传效应"

亲本背景
Background of parents
AC GT GC 最高黏度
PKV
热浆黏度
HPV
冷胶黏度
CPV
崩解值BDV 回复值
CSV
消减值
SBV
SSIIa背景下SSIIIa的效应 Effect of SSIIIa under SSIIa background
关东194
Kantou 194
0.03 -0.61 -3.40* 197.20* 185.60* 191.70* 11.70 6.10 -5.60
武粳13
Wujing 13
2.42* -0.77 -16.95 -126.50 -173.40 -52.70 46.90* 120.70* 73.80*
平均
Mean
1.23 -0.69 -10.18 35.35 6.10 69.50 29.30 63.40 34.10
SSIIIa背景下SSIIa的效应 Effect of SSIIa under SSIIIa background
关东194
Kantou 194
0.67 -0.57 7.24* 559.00* 322.20* 290.20* 236.80 -32.00 -268.80
武粳13
Wujing 13
3.07* -0.73 -6.31 235.30 -36.80 45.80 272.00* 82.60* -189.40*
平均
Mean
1.87 -0.65 0.47 397.15 142.70 168.00 254.40 25.30 -229.10

图7

不同直链淀粉含量半糯粳稻米粒的外观品质"

[1] 王才林, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝, 赵凌, 李余生. 水稻优质抗病高产育种的研究与实践. 江苏农业学报, 2012,28:921-927.
Wang C L, Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Zhou L H, Yao S, Zhao L, Li Y S. Studies and practice on the development of japonica rice varieties with good quality, disease resistance and high yield. Jiangsu J Agric Sci, 2012, 28:921-927 (in Chinese with English abstract).
[2] 鄂志国, 程本义, 孙红伟, 汪玉军, 朱练峰, 林海, 王磊, 童汉华, 陈红旗. 近40年我国水稻育成品种分析. 中国水稻科学, 2019,33:523-531.
E Z G, Cheng B Y, Sun H W, Wang Y J, Zhu L F, Lin H, Wang L, Tong H H, Chen H Q. Analysis on Chinese improved rice varieties in recent four decade. Chin J Rice Sci, 2019,33:523-531 (in Chinese with English abstract).
[3] Suto M, Ando I, Numaguchi K. Breeding of low amylose content paddy rice variety Milk Queen with good eating quality. Jpn Breed, 1996,46:221-224.
[4] 黄祖六, 许如根, 陈德辉, 陈勇. 中泰软米资源直链淀粉含量的遗传研究. 扬州大学学报(农业与生命科学版), 2003,24:34-36.
Huang Z L, Xu R G, Chen D H, Chen Y. Research on inheritance for amylose content of soft rice from China and Thailand. J Yangzhou Univ (Agric Life Sci Edn), 2003,24:34-36 (in Chinese with English abstract).
[5] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019,52:909-920.
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen T, Zhu Z, Zhao Q Y, Yao S, Liang W H, Lu K, Wang C L. Study on eating quality and physicochemical properties in Nanjing rice varieties. Sci Agric Sin, 2019,52:909-920 (in Chinese with English abstract).
[6] 王才林, 陈涛, 张亚东, 朱镇, 赵凌, 林静. 通过分子标记辅助选择培育优良食味水稻新品种. 中国水稻科学, 2009,23:25-30.
Wang C L, Chen T, Zhang Y D, Zhu Z, Zhao L, Lin J. Breeding of a new rice variety with good eating quality by marker assisted selection. Chin J Rice Sci, 2009,23:25-30 (in Chinese with English abstract).
[7] 王才林, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝. 优良食味粳稻新品种南粳5055的选育及利用. 农业科技通讯, 2012, (2):84-87.
Wang C L, Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Zhao L, Zhou L H, Yao S. Breeding and application of new good eating quality rice variety Nanjing 5055. Bull Agric Sci Tech, 2012, (2):84-87 (in Chinese with English abstract).
[8] 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌. 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013,41:86-88.
Wang C L, Zhang Y D, Zhu Z, Yao S, Zhao Q Y, Chen T, Zhou L H, Zhao L. Breeding and application of new good eating quality rice variety Nanjing 9108. Jiangsu Agric Sci, 2013,41:86-88 (in Chinese with English abstract).
[9] 陈涛, 张亚东, 赵庆勇, 朱镇, 姚姝, 周丽慧, 赵凌, 赵春芳, 王波, 王才林. 优良食味抗病高产晚粳稻新品种南粳3908的选育和栽培技术. 江苏农业科学, 2019,47:72-74.
Chen T, Zhang Y D, Zhao Q Y, Zhu Z, Yao S, Zhou L H, Zhao L, Zhao C F, Wang B, Wang C L. Breeding and cultivation technique of a new japonica rice variety Nanjing 3908 with good eating quality, resistant diseases and high yield. Jiangsu Agric Sci, 2019,47:72-74 (in Chinese with English abstract).
[10] 蔡锋, 吴俊生, 王才林. “南粳2728”特征特性及栽培技术要点. 上海农业科学, 2019, (373):44.
Cai F, Wu J S, Wang C L. Characteristics and cultivation techniques of “Nanjing 2728”. Shanghai Agric Sci, 2019, (373):44 (in Chinese).
[11] 于新, 赵庆勇, 赵春芳, 张亚东, 朱镇, 赵凌, 陈涛, 周丽慧, 姚姝, 王才林. 携带Wx-mq基因的不同类型水稻新品种(系)直链淀粉含量分析. 江苏农业学报, 2012,28:1218-1222.
Yu X, Zhao Q Y, Zhao C F, Zhang Y D, Zhu Z, Zhao L, Chen T, Zhou L H, Yao S, Wang C L. Analysis of amylose content in different types of new rice varieties (lines) carrying Wx-mq gene. Jiangsu J Agric Sci, 2012,28:1218-1222 (in Chinese with English abstract).
[12] 姚姝, 于新, 周丽慧, 陈涛, 赵庆勇, 朱镇, 张亚东, 赵春芳, 赵凌, 王才林. 氮肥用量和播期对优良食味粳稻直链淀粉含量的影响. 中国水稻科学, 2016,30:535-549.
Yao S, Yu X, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Zhang Y D, Zhao C F, Zhao L, Wang C L. Effects of nitrogen and sowing date on amylose content in good eating quality rice (Oryza sativa L. japonica). Chin J Rice Sci, 2016,30:535-549 (in Chinese with English abstract).
[13] Sato H. Genetics and breeding of high eating quality rice: status and perspectives on the researches of low amylose content rice. Jpn Agric Hortic, 2002,77:20-28.
[14] Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China-Life Sci, 2003,46:661-668.
[15] Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002,104:1-8.
doi: 10.1007/s001220200000 pmid: 12579422
[16] Umemoto T, Aoki N. Single-nucleotide polymorphisms in riceStarch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol, 2005,32:763-768.
[17] Bao J S, Corke H, Sun M. Nucleotide diversity in Starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice(Oryza sativa L.). Theor Appl Genet, 2006,113:1171-1183.
doi: 10.1007/s00122-006-0355-6 pmid: 16850313
[18] Waters D, Henry R J, Reinke R F, Fitzgeraid M A. Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotech, 2006,4:115-122.
[19] Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J, 2001,25:475-486.
pmid: 11309138
[20] Hirose T, Terao T. A comprehensive expression analysis of the starch synthase genes family in rice (Oryza sativa L.). Planta, 2004,220:9-16.
pmid: 15232694
[21] Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamyra Y. Functional and characterization of starch synthase I using mutants in rice. Plant Physiol, 2006,140:1070-1084.
pmid: 16443699
[22] 杨博文, 向珣朝, 许顺菊, 许亮, 王茜. Wx基因与SSIII-2基因互作对稻米蒸煮食味品质的影响. 西北植物学报, 2017,37:879-884.
Yang B W, Xiang X C, Xu S J, Xu L, Wang Q. Effects for interaction of Wx and SSIII-2 on rice eating and cooking qualities. Acta Bot Boreali-Occident Sin, 2017,37:879-884 (in Chinese with English abstract).
[23] Li S F, Wei X T, Ren Y L, Qiu J H, Jiao G A, Guo X P, Tang S Q, Wan J M, Hu P S. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Sci Rep, 2017,7:1-13.
pmid: 28127051
[24] Nuzhdin S V, Friesen M L, Mcintyre L M. Genotype phenotype mapping in a post-GWAS world. Trends Gene, 2012,28:421-426.
[25] Kong X, Zhu P, Sui Z, Bao J, Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinization temperature combinations. Food Chem, 2015,172:433-440.
pmid: 25442575
[26] 刘燕清, 强新涛, 赵春芳, 于新, 姚姝, 周丽慧, 陈涛, 赵庆勇, 朱镇, 张亚东, 王才林. 水稻淀粉合成相关基因分子标记的筛选与利用. 江苏农业学报, 2015,31:471-476.
Liu Y Q, Qiang X T, Zhao C F, Yu X, Yao S, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Zhang Y D, Wang C L. Selection and application of molecular markers for starch synthesis-related genes in rice. Jiangsu J Agric Sci, 2015,31:471-476 (in Chinese with English abstract).
[27] Rogers S O, Bandit A J. Extraction of DNA from plant tissues. J Integr Plant Biol, 2012,54:979-990.
doi: 10.1111/jipb.12008 pmid: 23137285
[28] 陈涛, 骆名瑞, 张亚东, 朱镇, 赵庆勇, 赵凌, 周丽慧, 姚姝, 王才林. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq. 中国水稻科学, 2013,27:529-534.
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao Q Y, Zhao L, Zhou L H, Yao S, Wang C L. Detection of Wx-mp gene for low amylose content by tetra-amplification refractory mutation system PCR in rice. Chin J Rice Sci, 2013,27:529-534 (in Chinese with English abstract).
[29] 蔡秀玲, 刘巧泉, 汤述翥, 顾铭洪, 王宗阳. 用于筛选直链淀粉含量为中等的籼稻品种的分子标记. 植物生理与分子生物学报, 2002,28:137-144.
Cai X L, Liu Q Q, Tang S Z, Gu M H, Wang Z Y. Development of a molecular marker for screening the rice cultivars with intermediate amylose content in Oryza sativa subsp. indica. J Plant Physiol Mol Biol, 2002,28:137-144.
[30] 田志喜, 严长杰, 钱前, 严松, 谢会兰, 王芳, 徐洁芬, 刘贵富, 王永红, 刘巧泉, 汤述翥, 李家洋, 顾铭洪. 水稻淀粉合成相关基因分子标记的建立. 科学通报, 2010,55:2591-2601.
Tian Z X, Yan C J, Qian Q, Yan S, Xie H L, Wang F, Xu J F, Liu G F, Wang Y H, Liu Q, Tang S Z, Li J Y, Gu M H. Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Chin Sci Bull, 2010,55:2591-2601 (in Chinese with English abstract).
[31] 万映秀. 水稻淀粉生物合成途径中关键酶基因分子标记的开发及应用. 四川农业大学, 四川成都, 2006.
Wan Y X. Development and Application of the Key Enzyme Gene Sequence-tagged Molecular Markers of Starch Biosynthesis in Rice (Oryza sativa L.). MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2006 (in Chinese with English abstract).
[32] 中华人民共和国农业部标准米质测定方法NY147-88. 北京: 中国标准出版社, 1988. pp 4-6.
Standard Rice Quality Measurement Method of Ministry of Agriculture of the People’s Republic of China NY147-88. Beijing: Standards Press of China, 1988. pp 4-6(in Chinese).
[33] 中华人民共和国国家标准. 粮油检验大米胶稠度的测定, GB/T 22294-2008. 北京: 中国标准出版社, 2009.
National Standard of the People’s Republic of China. Inspection of the Grain and Oil-determination of Rice Adhesive Strength, GB/T 22294-2008. Beijing: Standards Press of China, 2009 (in Chinese).
[34] 莫惠栋. 农业试验统计. 上海: 上海科学技术出版社, 1992. pp 151-166.
Mo H D. Agricultural Experiment Statistics. Shanghai: Shanghai Scientific and Technical Publishers, 1992. pp 151-166(in Chinese).
[35] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38:657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005,38:657-663 (in Chinese with English abstract).
[36] Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm a model tissue. Plant Cell Physiol, 2002,43:718-725.
pmid: 12154134
[37] Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature is a modifier gene for gel consistency in rice. J Integr Plant Biol, 2011,53:756-765.
doi: 10.1111/j.1744-7909.2011.01065.x pmid: 21711449
[38] Bao J S. Towards understanding of the genetic and molecular basis of eating and cooking quality of rice. Cereal Food World, 2012,57:148-156.
[39] Tian Z X, Qian Q, Liu Q Q, Yan M, Liu X, Yan C J, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009,106:21760-21765.
pmid: 20018713
[40] He Y, Han Y P, Jiang L, Xu C W, Lu J F, Xu M L. Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol Breed, 2006,18:277-290.
[41] 吴洪恺, 梁国华, 顾燕娟, 单丽丽, 王芳, 韩月澎, 顾铭洪. 水稻淀粉合成相关基因对稻米RVA谱特征的影响. 作物学报, 2006,32:159-163.
Wu H K, Liang G H, Gu Y J, Shan L L, Wang F, Han Y P, Gu M H. The effect of the starch-synthesizing genes on RVA profile characteristics in rice (Oryza sativa L.) Acta Agron Sin, 2006,32:159-163 (in Chinese with English abstract).
[42] 舒庆尧, 吴殿星, 夏英武, 高明尉, McClung A. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31:25-29.
Shu Q Y, Wu D X, Xia Y W, Gao M W, McClung A. Relationship between RVA profile character and eating quality inOryza sativa L. Sci Agric Sin, 1998,31:25-29 (in Chinese with English abstract).
[43] 陈峰, 张正球, 张士永, 张洪瑞, 杨连群, 严长杰. 稻米淀粉的生物合成与品质改良的研究进展. 山东农业科学, 2008, (3):20-25.
Chen F, Zhang Z Q, Zhang S Y, Zhang H R, Yang L Q, Yan C J. Research progress of rice starch biosynthesis and quality improvement. Shandong Agric Sci, 2008, (3):20-25 (in Chinese).
[44] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Pillay B, 王才林. Wxmp基因背景下SSIIaPUL基因对水稻蒸煮食味品质的影响 . 中国水稻科学, 2020,34:217-227.
Yao S, Zhang Y D, Liu Y Q, Zhao C F, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Pillay B, Wang C L. Allelic effects on eating and cooking quality of SSIIa and PUL genes under Wxmp background in rice. Chin J Rice Sci , 2020,34:217-227 (in press) (in Chinese with English abstract).
[45] Asai H, Abe N, Matsushima R, Crofts N, Oitome F N, Nakamura Y, Fujita N. Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds. J Exp Bot, 2014,65:5497-5507.
doi: 10.1093/jxb/eru310 pmid: 25071222
[46] Hannah L, James M. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotech, 2008,19:160-165.
doi: 10.1016/j.copbio.2008.02.013 pmid: 18400487
[47] Zhou S, Yin L, Xue H. Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol, 2013,16:236-246.
pmid: 23582455
[1] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[2] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[3] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[4] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[5] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[6] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[9] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[10] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[11] 赵小强,任斌,彭云玲,徐明霞,方鹏,庄泽龙,张金文,曾文静,高巧红,丁永福,陈奋奇. 8种水旱环境下2个玉米群体穗部性状QTL间的上位性及环境互作效应分析[J]. 作物学报, 2019, 45(6): 856-871.
[12] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[13] 艾丽娟,陈强,杨春燕,闫龙,王凤敏,葛荣朝,张孟臣. 大豆籽粒硬实加性和上位性QTL定位[J]. 作物学报, 2018, 44(6): 852-858.
[14] 周泉, 王龙昌, 马淑敏, 张小短, 邢毅, 张赛. 西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J]. 作物学报, 2018, 44(03): 431-441.
[15] 张巧玉,张睿,刘朝辉,田晓莉. 缺钾诱导早衰条件下应用嫁接技术研究根-冠互作对棉花下胚轴解剖结构的影响[J]. 作物学报, 2017, 43(10): 1527-1535.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!