欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1678-1689.doi: 10.3724/SP.J.1006.2020.04036

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白菜型油菜粒色主效基因BrTT1的调控机制分析

王艳花1,2(), 荐红举1, 邱晓2, 李加纳1,*()   

  1. 1 西南大学农学与生物科技学院 / 油菜工程研究中心, 重庆 400715
    2 萨斯喀彻温大学, 加拿大萨斯卡通 S7N5A8
  • 收稿日期:2020-02-17 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-15
  • 通讯作者: 李加纳
  • 作者简介:E-mail:hawer313@163.com
  • 基金资助:
    本研究由中国博士后科学基金面上项目(2019M653319);重庆市自然科学基金博士后科学基金项目(cstc2019jcyj-bsh0102);高等学校学科创新引智基地项目(“111”项目)(B12006)

Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L.

WANG Yan-Hua1,2(), JIAN Hong-Jiu1, QIU Xiao2, LI Jia-Na1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 University of Saskatchewan, Saskatoon S7N5A8, Canada
  • Received:2020-02-17 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-15
  • Contact: Jia-Na LI
  • Supported by:
    This study was supported by the Project of China Postdoctoral Science Foundation(2019M653319);the Project of Chongqing Natural Science Foundation Postdoctoral Science Foundation(cstc2019jcyj-bsh0102);Project of Intellectual Base for Discipline Innovation in Colleges and Universities (“111” Project)(B12006)

摘要:

白菜型油菜(Brassica rapa L., 2n = 20, AA)为十字花科芸薹属作物, 属于栽培油菜基本种。我国是白菜和白菜型油菜的起源中心, 与甘蓝型油菜相比, 其起源和栽培历史悠久, 遗传资源丰富, 具有天然而稳定的黄籽资源。大黄油菜是白菜型油菜中一种天然的黄籽资源, 其粒色鲜黄, 黄籽性状能够稳定遗传, 且具有大粒、含油量高、自交亲和性好等优点, 是研究油菜粒色性状的良好材料。本研究对白菜型油菜粒色主效基因BrTT1进行了进一步的功能验证, 并对BrTT1的粒色调控机制进行了初步解析。序列比较结果表明, BrTT1在不同遗传背景白菜型油菜黄籽、红褐籽、黑籽品种中存在固定的差异位点, 同一粒色材料所得BrTT1序列一致, 可用于预测粒色表型; 酵母双杂交分析表明, BrTT1可以与另外2个转录因子R2R3-MYB (BrTT2)和WD40 (BrTTG1)以及一个催化酶(BrTT3)相互作用。qRT-PCR结果表明, 超量和干扰BrTT1的表达, 导致类黄酮合成路径结构基因及其他关键调节基因BrTT2BrTTG1的异常表达或不表达, 从而阻碍了原花色素的正常积累。研究结果进一步明确了BrTT1在白菜型油菜粒色形成中的调节活性。

关键词: 白菜型油菜, BrTT1, 类黄酮代谢, 酵母双杂

Abstract:

Brassica rapa (B. rapa L., 2n = 20, AA) is a specie of Brassica genus, belonging to the basic species of cultivated rapeseed. China is the original center of Chinese cabbage and Brassica campestris. Compared with Brassica napus, it has a long history of origin and cultivation and rich genetic resources, which has natural and stable yellow seed resources. Dahuang has the natural yellow seed resource in B. rapa. Its seed coat color is bright yellow, the yellow seed trait can be stably inherited, and Dahuang has the advantages of large grain, high oil content and good self-adhesiveness. Sequence comparison showed that nucleotide polymorphisms were solely found in BrTT1 sequences from different seed color lines (yellow, red or brown, and black), which could be used to predict seed color phenotype. Yeast two-hybrid analysis indicated BrTT1 could interact with two other transcriptional factors R2R3-MYB (BrTT2) and WD40 (BrTTG1), and one catalytic enzyme (BrTT3). Quantitative RT-PCR analysis of transgenic B. rapa lines with the gene down-regulated by RNA interference and up-regulated by overexpression revealed that two contrasting groups of genes were regulated by BrTT1 in the biosynthesis and deposition of flavonoids pigments in the seed of B. rapa. These results further define the regulatory activity of BrTT1 in seed coat color formation in Brassica species.

Key words: Brassica rapa, BrTT1, flavonoid, yeast two-hybrid

附表1

不同来源的白菜型油菜黄、红、黑籽材料"

编号
No.
材料名称和来源
Material name and origin
种子粒色表型
Phenotype of the seeds
编号
No.
材料名称和来源
Material name and origin
种子粒色表型
Phenotype of the seeds
Y1 大黄(中国青海)
Dahuang (Qinghai, China)
纯黄籽
Yellow seeds
R6 18B167-168 (中国青海)
18B167-168 (Qinghai, China)
红褐籽
Red or brown seeds
Y2 18B07-08 (中国青海)
18B07-08 (Qinghai, China)
纯黄籽
Yellow seeds
R7 18B171-172 (中国青海)
18B171-172 (Qinghai, China)
红褐籽
Red or brown seeds
Y3 彭波黄(中国青海)
Pengbo yellow (Qinghai, China)
纯黄籽
Yellow seeds
R8 18B141-142 (中国青海)
18B141-142 (Qinghai, China)
红褐籽
Red or brown seeds
Y4 18B001-002 (中国青海)
18B001-002 (Qinghai, China)
纯黄籽
Yellow seeds
R9 18B51-52 (中国青海)
18B51-52 (Qinghai, China)
红褐籽
Red or brown seeds
Y5 Sarson (印度)
Sarson (India)
纯黄籽
Yellow seeds
B1 浩油 11号(中国青海)
Haoyou 11 (Qinghai, China)
纯黑籽
Black seeds
Y6 18BCan01 (加拿大)
18BCan01 (Canada)
纯黄籽
Yellow seeds
B2 芦花小油菜(中国青海)
Luhua rapeseed (Qinghai, China)
纯黑籽
Black seeds
R1 18B017-018 (中国青海)
18B017-018 (Qinghai, China)
红褐籽
Red or brown seeds
B3 街子小油菜(中国青海)
Jiezi rapeseed (Qinghai, China)
纯黑籽
Black seeds
R2 18B021-022 (中国青海)
18B021-022 (Qinghai, China)
红褐籽
Red or brown seeds
B4 18B077-078 (中国青海)
18B077-078 (Qinghai, China)
纯黑籽
Black seeds
R3 18B105-106 (中国甘肃)
18B105-106 (Gansu, China)
红褐籽
Red or brown seeds
B5 麻玉小油菜(中国青海)
Mayu rapeseed (Qinghai, China)
纯黑籽
Black seeds
R4 18B131-132 (中国青海)
18B131-132 (Qinghai, China)
红褐籽
Red or brown seeds
B6 18B161-162 (中国青海)
18B161-162 (Qinghai, China)
纯黑籽
Black seeds
R5 18B165-166 (中国青海)
18B165-166 (Qinghai, China)
红褐籽
Red or brown seeds
B7 18BCan02 (加拿大)
18BCan02 (Canada)
纯黑籽
Black seeds

附表2

用于载体构建的引物序列"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
Yb-F/-R CCGGAATTCATGTTTTCATCACTCTCAAACCACT CGCGGATCCTTAAAAGTGCGTTTCAGAGACAGA
T2-F/-R CCGGAATTCATGATGAGAAAGAGAGAAAGTAGTA CGCGGATCCCTAACAATTAAAGTCCCAGAGACAA
T3-F/-R CCGGAATTCATGATTCTGGAGGAGAAAGATGCAT CCCATCGATTTAGCTATCTGAACGTTTTGGATCG
T7-F/-R CCGGAATTCATGGTGATGGGTACACCGTCTTCGT CGCGGATCCTCAAACAGGAACGCTGTGCAAGACC
T8-F/-R CCGGAATTCATGGATGAATTAAGTATTATACCGT CGCGGATCCCTAGAGTTTATTATTATATATGATT
T18-F/-R CCGGAATTCATGGGTAGCAAGATGCTGTTCAGTT CGCGGATCCTTAGCTTGCTTCTGGCAATGTGATC
TG1-F/-R CCGGAATTCATGGACAACTCAGCTCCGGACTCCT CGCGGATCCTCAAACTCTAAGGAGCTGCATTTTG
TG2-F/-R CCGGAATTCATGGAGGTGAAAGAGAGTAAGAGAG CGCGGATCCTCAAATGGCTTGATTAGAATGTTGT
T10-F/-R CCGGAATTCATGACAAGCACTGATCAGACCACCG CGCGGATCCTTAGGCCCATCGGTTTGTCTTAAAG
T12-F/-R CCGGAATTCATGGGGAGGAAGACGTGGTTCGACG CGCGGATCCTCAGAAGAGATAATCAAGTATCTGA
T5-F/-R CCGGAATTCATGAGACATTCTTGCTGTTATAAAC CGCGGATCCCTAAAGGGACTGACCAAAAGAGACA
F/R-TT1 ATGTTTTCATCACTCTCAAACCACT TTAAAAGTGCGTTTCAGAGACAGA
gCb-F/-R CACCATGTTTTCATCACTCTCAAACCACT AAAGTGCGTTTCAGAGACAGA
F35S3ND/CB-R GGAAGTTCATTTCATTTGGAGAG AAAGTGCGTTTCAGAGACAGA
FBTT1I GGATCCGACGTCGAGATCTATAAACATTCCC

附表3

用于差异表达分析的引物序列"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
28S ATAACCGCATCAGGTCTCCAAG CCTCAGAGCCAATCCTTTTCC
BrTT1 TCGCTACAACAATCTTCAGATGCACA TCCTGCACCCTTCAACGCAGC
BrTT2 AGCTGGTCTCAAGAGGTGTGGCA AGCCTCCCAGCTATCAACGACC
BrTT3 CAGGATGGATGTATTTCATGTCG TGTGCCTCGTTACGAGTGATAG
BrTT4 GACTACTACTTCCGCATCACCAACAG GCCTAGCTTAGGGACTTCAACAACC
BrTT5 CTTCCTCGGTGGCGCAGGTG ACACAGTTCTCCGTTACTTTCTCTGA
BrTT6 CGAGAAAGAGGCACTCACCAATG TGAACCTCCCGTTGCTCAGATA
BrTT7 GTGGTTGCCGCCTCTAAATC CTAGCTCGCGCATGAGTGTTC
BrTT8 GGCTGAAGAGGCTGCGTCGG GTGCTGTGCAAGCCCTCGCT
BrTT10 GCGACTGTGCCAAGAAACGGT CCCCACGTGAGATGTCTATCAAAGTG
BrTT12 GCTCCACAGAGACATACGAGCCG ACGGTGACGAAGCTGAGCATGTA
BrTT16 TGCTCACATCGGTCTCATCGTCT GCTCGTGTGGAGGAATGGAGGC
BrTT18 AAGAAGAGCTCGAGAGCATCAAC GCATACTTCTCCTTCTCTTCCAC
BrTTG1 TCCTCCGGCGACTTCCTCCG GCTGCGTCTCCACCACGGAC
BrTTG2 AAACCTAAAGCAAAGCTTGTCTCCCA ACTTCCTTTGACTTGCTTCTGTCCGT
BrBAN TTAACTGGGCATACCCAATCTC TGCATTTCTTTCCGGGTAATC

图1

BrTT1同源基因氨基酸序列比对"

图2

不同粒色的BrTT1基因的核苷酸序列比对 A: 不同粒色的白菜型油菜种子表型(黑色、红褐色和黄色); B: 来自不同粒色的 BrTT1的核苷酸序列。TT1-B: 从黑籽中扩增得到的BrTT1-B序列; TT1-R: 从红褐籽种子中扩增得到的BrTT1-R序列; TT1-Y: 从黄籽中扩增得到的BrTT1-Y序列。核苷酸多态性通过颜色突出显示, 共有序列下方的线代表内含子区域。标尺 = 5000 μm。"

图3

BrTT1基因在3种不同粒色种子形成期的表达分析 B1: 黑色种子系; R2: 红褐籽种子系; Y2: 黄籽种子系。DAF: 开花后天数。"

图4

白菜型油菜BrTT1的互作蛋白预测分析"

表1

预测白菜型油菜BrTT1的互作蛋白的信息"

基因ID
Gene ID
蛋白类型
Protein type
打分值
Score
基因ID
Gene ID
蛋白类型
Protein type
打分值Score
Bra027457 BrTT3 0.996 Bra005210 BrTTG2-A, WRKY44 0.814
Bra035532 BrTT2 0.992 Bra023112 BrTTG2-B 0.814
Bra009770 BrTTG1 0.909 Bra026408 Uncharacterized protein 0.607
Bra037887 BrTT8 0.894 Bra013652 BrTT18 0.568
Bra009312 BrTT7 0.885 Bra016108 Uncharacterized protein 0.568
Bra040822 Uncharacterized protein 0.882 Bra009101 Uncharacterized protein 0.568
Bra003361 BrTT12 0.881 Bra039487 Uncharacterized protein 0.434
Bra007142 BrTT5 0.822 Bra035364 Uncharacterized protein 0.434
Bra037510 BrTT10-2 0.821 Bra006205 Uncharacterized protein 0.379
Bra020720 BrTT10-1A 0.821 Bra021170 Uncharacterized protein 0.365

图5

酵母双杂筛选BrTT1可能的互作蛋白 酵母细胞涂布于-Leu/-Trp/-Ade/-His的培养基, pGADT7- T/pGBKT7-53作为阳性对照, pGADT7-T/pGBKT7-laminC作为阴性对照。X-α-gal的染色深度表示互作强弱。"

附图1

PCR扩增检测RNAi BrTT1得到的阳性转基因植株 检测引物为F35S3ND/FBTT1I (附表2), 检测片段1.0 kb。+表示阳性对照。"

附图2*

PCR扩增检测过表达 BrTT1得到的阳性转基因植株 检测引物为F35S3ND/FBTT1I (附表2), 检测片段1.0 kb。+表示阳性对照。"

图6

过量和干扰表达BrTT1基因 A: 转基因种子中BrTT1的差异表达; O1~O4: 过量表达转基因株系; Ri1~Ri4: 干扰表达转基因株系; B: 非转基因黑籽材料; DAF: 开花后天数。B: 左、中、右分别为过量表达、干扰表达BrTT1基因、非转基因褐籽对照成熟种子表型。标尺 = 5000 μm。"

图7

RNAi和超量表达BrTT1基因的转基因株系中类黄酮相关基因的表达分析 O1~O4: 过量表达转基因株系; Ri1~Ri4: 干扰表达转基因株系; DAF: 开花后天数。"

[1] He Y T, Tu J X, Fu T D, Li D R, Chen B Y. Genetic diversity of germplasm resources of Brassica campestris L. in China by RAPD markers. Acta Agron Sin, 2002,28:697-703.
[2] Chen X, Wu J, Liu K. Genetic diversity comparison between spring and weak-winter Brassica napus cultivars using single- locus SSR markers. Chin J Oil Crop Sci, 2010,32:6-13.
[3] Wang J L, Chang T J, Cheng H H, Fang H L. Study on character evolution and cladistic taxonomy of wild rapes (Brassica campestris and B. juncea) in Tibet. J Plant Resour Environ, 2008,17:10-17.
[4] Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna K R. Production and characterization of interspecific hybrids between Brassica maurorum and crop Brassicas. Theor Appl Genet, 1999,98:608-613.
[5] Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy, 2000,19:271-279.
[6] Rahman M H, Joersbo M, Poulsen M H. Development of yellow-seededBrassica napus of double low quality. Plant Breed, 2001,120:473-478.
[7] Rahman M H. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472.
[8] Whetten R W, Mackay J J, Sederoff R R. Recent advances in understanding lignin biosynthesis. Plant Biol, 1998,49:585-609.
doi: 10.1007/s10535-005-0053-2
[9] Meng J L, Shi S W, Gan L, Li Z Y, Qu X S. The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333.
doi: 10.1023/A:1018646223643
[10] Mukhlesur R M, Hirata Y. Homology of seed coat color specific marker of B. juncea with brown seeded cultivar of B. rapa. J Biol Sci, 2004,4:731-734.
doi: 10.3923/jbs.2004.731.734
[11] Shirzadegan M, Röbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fett Seifen Anstrichmittel, 1985,87:235-237.
[12] Akhov L, Ashe P, Tan Y F, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Bot-botanique, 2009,87:616-625.
[13] Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem, 1995,43:2062-2066.
doi: 10.1021/jf00056a020
[14] Ren Y J, He Q, Ma X M, Zhang L G. Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci, 2017,8:1410-1418.
pmid: 28855913
[15] Ye X, Li J N, Tang Z L. Difference of seed coat color between black-and yellow-seeded in B. napus with seed development changes of anthocyanin, phenylalanine and phenylalaine ammonia-lyase and their correlation analyses. Chin J Oil Crop Sci, 2002,28:638-643.
[16] Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Meng Y J, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007,50:840-854.
doi: 10.1139/g07-068 pmid: 17893725
[17] Schwetka A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet, 1982,62:161-169.
doi: 10.1007/BF00293352 pmid: 24270566
[18] Vera C L, Woods D L, Downey R K. Inheritance of seed coat color in Brassica juncea. Can J Plant Sci, 1979,59:635-637.
doi: 10.4141/cjps79-100
[19] Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Sheng J X, Tu J X, Fu T D. A large insertion in bHLH transcription factorBrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012,7:e44145.
doi: 10.1371/journal.pone.0044145 pmid: 22984469
[20] Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins—a final frontier in flavonoid research. New Phytol, 2005,165:9-28.
doi: 10.1111/j.1469-8137.2004.01217.x pmid: 15720617
[21] Alois H D, Klíma , Miroslav K, Viehmannová I, Milan O U, Eloy F C, Miroslava V. Efficient resynthesis of oilseed rape (Brassica napus L.) from crosses of winter types B. rapa × B. oleracea via simple ovule culture and early hybrid verification. Plant Cell Tissue Organ Cult, 2015,120:191-201.
doi: 10.1007/s11240-014-0593-2
[22] Deynze A E V, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes inBrassica napus. Genome, 1995,38:534-542.
pmid: 18470187
[23] Zhang Y, Li X, Ma C Z, Shen J X, Chen B Y, Tu J X, Fu T D. The inheritance of seed color in a resynthesized Brassica napus line No. 2127-17 including a new epistatic locus. Genes Genomics, 2009,31:413-419.
doi: 10.1007/BF03191854
[24] Rahman M, Mcvetty P B E, Li G. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene inBrassica rapa L. Theor Appl Genet, 2007,115:1101-1107.
pmid: 17846742
[25] Öztürk Ö. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean J Agric Res, 2010,70:132-141.
[26] Ahmed S U, Zuberi M I. Effects of seed size on yield and some of its components in rapeseed,Brassica campestris L. var Toria. Crop Sci, 1973,13:119-120.
doi: 10.2135/cropsci1973.0011183X001300010039x
[27] Xiao L, Zhao Z, Du D, Yao Y M, Xu L, Tang G Y. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet, 2012,124:903-909.
doi: 10.1007/s00122-011-1754-x
[28] Yan M L. Cloning and SNP analysis of TT1 gene in Brassica juncea. Acta Agron Sin, 2010,36:1634-1641.
doi: 10.3724/SP.J.1006.2010.01634
[29] Lian J P, Lu X C, Yin N W, Ma L J, Lu J, Liu X, Li J N, Lu J, Lei B, Wang R, Chai Y R. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci, 2017,254:32-47.
doi: 10.1016/j.plantsci.2016.10.012 pmid: 27964783
[30] Wang Y H, Xiao L, Guo S M, An F Y, Du D Z. Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One, 2016,11:e0166464.
doi: 10.1371/journal.pone.0166464 pmid: 27829069
[31] Wang Y H, Xiao L, Dun X L, Liu K D, Du D Z. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang(Brassica rapa L. landrace). Mol Breed, 2017,37:137-150.
[32] Yan M, Wei G, Pan X H, Ma H L. A method suitable for extracting genomic DNA from animal and plant-modified CTAB method. J Anhui Agric Sci, 2008,36:500-504.
[33] Li J G, Han G Y, Li X M, Sun J J, Song K J, Zhang T. Improvement of TA cloning method to facilitate direct directional cloning of PCR products. Appl Mechan Materials, 2014,565:3-8.
[34] Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent Testa 1 gene(TT1) family. J Agric Biotechnol, 2010,18:1189-1190.
[35] Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003,21:599-604.
doi: 10.1007/s00299-002-0560-y pmid: 12789436
[36] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nat Protocol, 2008,3:1101-1108.
doi: 10.1038/nprot.2008.73
[37] 王艳花. 大黄油菜粒色性状候选基因的定位克隆及功能分析. 青海大学博士学位论文, 青海西宁, 2017.
Wang Y H. Positional Cloning and Functional Study of Seed Coat Color Gene in Dahuang (Brassica rapa L. landrace) . PhD Dissertation of Qinghai University, Xining, Qinghai, China, 2017 (in Chinese with English abstract).
[38] Feinbaum R L, Ausubel F M. Transcriptional regulation of theArabidopsis thaliana chalcone synthase gene. Mol Cell Biol, 1988,8:1985-1992.
pmid: 3386631
[39] Marek M, Sebastian K, Takayuki T, Federico M G, Olivia W, Malcolm M C, Alisdair R F, Björn U, Zoran N, Staffan P. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell, 2011,23:895-910.
doi: 10.1105/tpc.111.083667 pmid: 21441431
[40] Hartmann U, Valentine W J, Christie J M, Hays J, Jenkins G I, Weisshaar B. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol, 1998,36:741-754.
doi: 10.1023/a:1005921914384 pmid: 9526507
[41] Li X, Bonawitz N D, Weng J K, Clint C. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell, 2010,22:1620-1632.
doi: 10.1105/tpc.110.074161 pmid: 20511296
[42] Jiang W B, Yin Q G, Wu R R, Zheng G S, Liu J Y, Dixon R A, Pang Y Z. Role of a chalcone isomerase-like protein in flavonoid biosynthesis inArabidopsis thaliana. J Exp Bot, 2015,66:7165-7179.
pmid: 26347569
[43] Pelletier M K. Molecular and Biochemical Genetics of 2-oxoglutarate-dependent Dioxygenases Required for Flavonoid Biosynthesis in Arabidopsis thaliana. PhD Dissertation of Virginia Tech, Blacksburg, Virginia, America, 1997.
[44] Han Y P, Sornkanok V, Ruth E S G, Sergio R M, Zheng D M, Anatoli V L, Schuyler S K. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol, 2010,153:806-820.
doi: 10.1104/pp.109.152801 pmid: 20357139
[45] Abrahams S, Tanner G J, Ashton L A R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway inArabidopsis. Plant Physiol, 2002,130:561-576.
pmid: 12376625
[46] Sato S, Tabata S. The complete genome sequence of Arabidopsis thaliana. Tanpakushitsu Kakusan Koso, 2001,46:61-65.
pmid: 11193333
[47] Matsui K, Tanaka H, Ohme-Takagi M. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotechnol J, 2004,2:487-493.
doi: 10.1111/j.1467-7652.2004.00094.x pmid: 17147621
[48] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008,53:814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197
[49] Appelhagen I, Lu G H, Huep G, Schmelzer E, Weisshaar B, Sagasser M. TRANSPARENT TESTA1 interacts with R2R3 MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J, 2011,67:406-419.
doi: 10.1111/j.1365-313X.2011.04603.x pmid: 21477081
[50] Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. The regulation of flavonoid biosynthesis. Sci Flavonoids, 2006,179:79-86.
[51] Shijun S. The study of seed coat color in yellow-seeded Brassica napus. J Huazhong Agric, 2003,22:608-612.
[52] Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 2010,39:366-380.
pmid: 15255866
[53] Su F, Hu J, Zhang Q L, Luo Z R. Isolation and characterization of a basic Helix-Loop-Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci Hortic, 2012,136:115-121.
doi: 10.1016/j.scienta.2012.01.013
[54] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 176-185.
doi: 10.1016/s1360-1385(99)01405-3 pmid: 10322557
[55] Wendell D L, Anoumid V, Gurbaksh S. The gene encoding dihydroflavonol 4-reductase is a candidate for the anthocyaninless locus of rapid cycling Brassica rapa(Fast Plants Type). PLoS One, 2016,11:e0161394.
doi: 10.1371/journal.pone.0161394 pmid: 27548675
[56] Ahmed N U, Park J I, Jung H J, Yang T J, Hur Y K, Nou I S. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene, 2014,550:46-55.
doi: 10.1016/j.gene.2014.08.013 pmid: 25108127
[57] Zhang K, Lu K, Qu C M, Liang Y, Wang R, Chai Y R, Li J N. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One, 2013,8:e61247.
pmid: 23613820
[1] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[2] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[3] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[4] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[5] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[6] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[7] 岳芳,汪雷,陈燕桂,忻晓霞,李勤菲,梅家琴,熊志勇,钱伟. 利用异源六倍体(A rA rA nA nC nC n)与甘蓝种间杂交合成甘蓝型油菜的新方法[J]. 作物学报, 2019, 45(2): 188-195.
[8] 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783.
[9] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[10] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[11] 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063.
[12] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[13] 赵会彦,肖麓,赵志,杜德志*. 青海大黄油菜粒色性状分子标记的开发和图谱整合[J]. 作物学报, 2014, 40(06): 965-972.
[14] 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019.
[15] 曾秀存,刘自刚,史鹏辉,许耀照,孙佳,方彦,杨刚,武军艳,孔德晶,孙万仓. 白菜型冬油菜铜锌超氧化物歧化酶(Cu/Zn-SOD)基因的克隆及其在低温条件下的表达分析[J]. 作物学报, 2014, 40(04): 636-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!