作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1678-1689.doi: 10.3724/SP.J.1006.2020.04036
WANG Yan-Hua1,2(), JIAN Hong-Jiu1, QIU Xiao2, LI Jia-Na1,*()
摘要:
白菜型油菜(Brassica rapa L., 2n = 20, AA)为十字花科芸薹属作物, 属于栽培油菜基本种。我国是白菜和白菜型油菜的起源中心, 与甘蓝型油菜相比, 其起源和栽培历史悠久, 遗传资源丰富, 具有天然而稳定的黄籽资源。大黄油菜是白菜型油菜中一种天然的黄籽资源, 其粒色鲜黄, 黄籽性状能够稳定遗传, 且具有大粒、含油量高、自交亲和性好等优点, 是研究油菜粒色性状的良好材料。本研究对白菜型油菜粒色主效基因BrTT1进行了进一步的功能验证, 并对BrTT1的粒色调控机制进行了初步解析。序列比较结果表明, BrTT1在不同遗传背景白菜型油菜黄籽、红褐籽、黑籽品种中存在固定的差异位点, 同一粒色材料所得BrTT1序列一致, 可用于预测粒色表型; 酵母双杂交分析表明, BrTT1可以与另外2个转录因子R2R3-MYB (BrTT2)和WD40 (BrTTG1)以及一个催化酶(BrTT3)相互作用。qRT-PCR结果表明, 超量和干扰BrTT1的表达, 导致类黄酮合成路径结构基因及其他关键调节基因BrTT2、BrTTG1的异常表达或不表达, 从而阻碍了原花色素的正常积累。研究结果进一步明确了BrTT1在白菜型油菜粒色形成中的调节活性。
[1] | He Y T, Tu J X, Fu T D, Li D R, Chen B Y. Genetic diversity of germplasm resources of Brassica campestris L. in China by RAPD markers. Acta Agron Sin, 2002,28:697-703. |
[2] | Chen X, Wu J, Liu K. Genetic diversity comparison between spring and weak-winter Brassica napus cultivars using single- locus SSR markers. Chin J Oil Crop Sci, 2010,32:6-13. |
[3] | Wang J L, Chang T J, Cheng H H, Fang H L. Study on character evolution and cladistic taxonomy of wild rapes (Brassica campestris and B. juncea) in Tibet. J Plant Resour Environ, 2008,17:10-17. |
[4] | Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna K R. Production and characterization of interspecific hybrids between Brassica maurorum and crop Brassicas. Theor Appl Genet, 1999,98:608-613. |
[5] | Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy, 2000,19:271-279. |
[6] | Rahman M H, Joersbo M, Poulsen M H. Development of yellow-seededBrassica napus of double low quality. Plant Breed, 2001,120:473-478. |
[7] | Rahman M H. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472. |
[8] |
Whetten R W, Mackay J J, Sederoff R R. Recent advances in understanding lignin biosynthesis. Plant Biol, 1998,49:585-609.
doi: 10.1007/s10535-005-0053-2 |
[9] |
Meng J L, Shi S W, Gan L, Li Z Y, Qu X S. The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333.
doi: 10.1023/A:1018646223643 |
[10] |
Mukhlesur R M, Hirata Y. Homology of seed coat color specific marker of B. juncea with brown seeded cultivar of B. rapa. J Biol Sci, 2004,4:731-734.
doi: 10.3923/jbs.2004.731.734 |
[11] | Shirzadegan M, Röbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fett Seifen Anstrichmittel, 1985,87:235-237. |
[12] | Akhov L, Ashe P, Tan Y F, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Bot-botanique, 2009,87:616-625. |
[13] |
Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem, 1995,43:2062-2066.
doi: 10.1021/jf00056a020 |
[14] |
Ren Y J, He Q, Ma X M, Zhang L G. Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci, 2017,8:1410-1418.
pmid: 28855913 |
[15] | Ye X, Li J N, Tang Z L. Difference of seed coat color between black-and yellow-seeded in B. napus with seed development changes of anthocyanin, phenylalanine and phenylalaine ammonia-lyase and their correlation analyses. Chin J Oil Crop Sci, 2002,28:638-643. |
[16] |
Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Meng Y J, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007,50:840-854.
doi: 10.1139/g07-068 pmid: 17893725 |
[17] |
Schwetka A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet, 1982,62:161-169.
doi: 10.1007/BF00293352 pmid: 24270566 |
[18] |
Vera C L, Woods D L, Downey R K. Inheritance of seed coat color in Brassica juncea. Can J Plant Sci, 1979,59:635-637.
doi: 10.4141/cjps79-100 |
[19] |
Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Sheng J X, Tu J X, Fu T D. A large insertion in bHLH transcription factorBrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012,7:e44145.
doi: 10.1371/journal.pone.0044145 pmid: 22984469 |
[20] |
Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins—a final frontier in flavonoid research. New Phytol, 2005,165:9-28.
doi: 10.1111/j.1469-8137.2004.01217.x pmid: 15720617 |
[21] |
Alois H D, Klíma , Miroslav K, Viehmannová I, Milan O U, Eloy F C, Miroslava V. Efficient resynthesis of oilseed rape (Brassica napus L.) from crosses of winter types B. rapa × B. oleracea via simple ovule culture and early hybrid verification. Plant Cell Tissue Organ Cult, 2015,120:191-201.
doi: 10.1007/s11240-014-0593-2 |
[22] |
Deynze A E V, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes inBrassica napus. Genome, 1995,38:534-542.
pmid: 18470187 |
[23] |
Zhang Y, Li X, Ma C Z, Shen J X, Chen B Y, Tu J X, Fu T D. The inheritance of seed color in a resynthesized Brassica napus line No. 2127-17 including a new epistatic locus. Genes Genomics, 2009,31:413-419.
doi: 10.1007/BF03191854 |
[24] |
Rahman M, Mcvetty P B E, Li G. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene inBrassica rapa L. Theor Appl Genet, 2007,115:1101-1107.
pmid: 17846742 |
[25] | Öztürk Ö. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean J Agric Res, 2010,70:132-141. |
[26] |
Ahmed S U, Zuberi M I. Effects of seed size on yield and some of its components in rapeseed,Brassica campestris L. var Toria. Crop Sci, 1973,13:119-120.
doi: 10.2135/cropsci1973.0011183X001300010039x |
[27] |
Xiao L, Zhao Z, Du D, Yao Y M, Xu L, Tang G Y. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet, 2012,124:903-909.
doi: 10.1007/s00122-011-1754-x |
[28] |
Yan M L. Cloning and SNP analysis of TT1 gene in Brassica juncea. Acta Agron Sin, 2010,36:1634-1641.
doi: 10.3724/SP.J.1006.2010.01634 |
[29] |
Lian J P, Lu X C, Yin N W, Ma L J, Lu J, Liu X, Li J N, Lu J, Lei B, Wang R, Chai Y R. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci, 2017,254:32-47.
doi: 10.1016/j.plantsci.2016.10.012 pmid: 27964783 |
[30] |
Wang Y H, Xiao L, Guo S M, An F Y, Du D Z. Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One, 2016,11:e0166464.
doi: 10.1371/journal.pone.0166464 pmid: 27829069 |
[31] | Wang Y H, Xiao L, Dun X L, Liu K D, Du D Z. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang(Brassica rapa L. landrace). Mol Breed, 2017,37:137-150. |
[32] | Yan M, Wei G, Pan X H, Ma H L. A method suitable for extracting genomic DNA from animal and plant-modified CTAB method. J Anhui Agric Sci, 2008,36:500-504. |
[33] | Li J G, Han G Y, Li X M, Sun J J, Song K J, Zhang T. Improvement of TA cloning method to facilitate direct directional cloning of PCR products. Appl Mechan Materials, 2014,565:3-8. |
[34] | Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent Testa 1 gene(TT1) family. J Agric Biotechnol, 2010,18:1189-1190. |
[35] |
Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003,21:599-604.
doi: 10.1007/s00299-002-0560-y pmid: 12789436 |
[36] |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nat Protocol, 2008,3:1101-1108.
doi: 10.1038/nprot.2008.73 |
[37] | 王艳花. 大黄油菜粒色性状候选基因的定位克隆及功能分析. 青海大学博士学位论文, 青海西宁, 2017. |
Wang Y H. Positional Cloning and Functional Study of Seed Coat Color Gene in Dahuang (Brassica rapa L. landrace) . PhD Dissertation of Qinghai University, Xining, Qinghai, China, 2017 (in Chinese with English abstract). | |
[38] |
Feinbaum R L, Ausubel F M. Transcriptional regulation of theArabidopsis thaliana chalcone synthase gene. Mol Cell Biol, 1988,8:1985-1992.
pmid: 3386631 |
[39] |
Marek M, Sebastian K, Takayuki T, Federico M G, Olivia W, Malcolm M C, Alisdair R F, Björn U, Zoran N, Staffan P. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell, 2011,23:895-910.
doi: 10.1105/tpc.111.083667 pmid: 21441431 |
[40] |
Hartmann U, Valentine W J, Christie J M, Hays J, Jenkins G I, Weisshaar B. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol, 1998,36:741-754.
doi: 10.1023/a:1005921914384 pmid: 9526507 |
[41] |
Li X, Bonawitz N D, Weng J K, Clint C. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell, 2010,22:1620-1632.
doi: 10.1105/tpc.110.074161 pmid: 20511296 |
[42] |
Jiang W B, Yin Q G, Wu R R, Zheng G S, Liu J Y, Dixon R A, Pang Y Z. Role of a chalcone isomerase-like protein in flavonoid biosynthesis inArabidopsis thaliana. J Exp Bot, 2015,66:7165-7179.
pmid: 26347569 |
[43] | Pelletier M K. Molecular and Biochemical Genetics of 2-oxoglutarate-dependent Dioxygenases Required for Flavonoid Biosynthesis in Arabidopsis thaliana. PhD Dissertation of Virginia Tech, Blacksburg, Virginia, America, 1997. |
[44] |
Han Y P, Sornkanok V, Ruth E S G, Sergio R M, Zheng D M, Anatoli V L, Schuyler S K. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol, 2010,153:806-820.
doi: 10.1104/pp.109.152801 pmid: 20357139 |
[45] |
Abrahams S, Tanner G J, Ashton L A R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway inArabidopsis. Plant Physiol, 2002,130:561-576.
pmid: 12376625 |
[46] |
Sato S, Tabata S. The complete genome sequence of Arabidopsis thaliana. Tanpakushitsu Kakusan Koso, 2001,46:61-65.
pmid: 11193333 |
[47] |
Matsui K, Tanaka H, Ohme-Takagi M. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotechnol J, 2004,2:487-493.
doi: 10.1111/j.1467-7652.2004.00094.x pmid: 17147621 |
[48] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008,53:814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197 |
[49] |
Appelhagen I, Lu G H, Huep G, Schmelzer E, Weisshaar B, Sagasser M. TRANSPARENT TESTA1 interacts with R2R3 MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J, 2011,67:406-419.
doi: 10.1111/j.1365-313X.2011.04603.x pmid: 21477081 |
[50] | Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. The regulation of flavonoid biosynthesis. Sci Flavonoids, 2006,179:79-86. |
[51] | Shijun S. The study of seed coat color in yellow-seeded Brassica napus. J Huazhong Agric, 2003,22:608-612. |
[52] |
Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 2010,39:366-380.
pmid: 15255866 |
[53] |
Su F, Hu J, Zhang Q L, Luo Z R. Isolation and characterization of a basic Helix-Loop-Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci Hortic, 2012,136:115-121.
doi: 10.1016/j.scienta.2012.01.013 |
[54] |
Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 176-185.
doi: 10.1016/s1360-1385(99)01405-3 pmid: 10322557 |
[55] |
Wendell D L, Anoumid V, Gurbaksh S. The gene encoding dihydroflavonol 4-reductase is a candidate for the anthocyaninless locus of rapid cycling Brassica rapa(Fast Plants Type). PLoS One, 2016,11:e0161394.
doi: 10.1371/journal.pone.0161394 pmid: 27548675 |
[56] |
Ahmed N U, Park J I, Jung H J, Yang T J, Hur Y K, Nou I S. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene, 2014,550:46-55.
doi: 10.1016/j.gene.2014.08.013 pmid: 25108127 |
[57] |
Zhang K, Lu K, Qu C M, Liang Y, Wang R, Chai Y R, Li J N. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One, 2013,8:e61247.
pmid: 23613820 |
[1] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[2] | 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146. |
[3] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[4] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
[5] | 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39. |
[6] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[7] | 岳芳,汪雷,陈燕桂,忻晓霞,李勤菲,梅家琴,熊志勇,钱伟. 利用异源六倍体(A rA rA nA nC nC n)与甘蓝种间杂交合成甘蓝型油菜的新方法[J]. 作物学报, 2019, 45(2): 188-195. |
[8] | 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783. |
[9] | 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428. |
[10] | 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550. |
[11] | 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063. |
[12] | 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766. |
[13] | 赵会彦,肖麓,赵志,杜德志*. 青海大黄油菜粒色性状分子标记的开发和图谱整合[J]. 作物学报, 2014, 40(06): 965-972. |
[14] | 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019. |
[15] | 曾秀存,刘自刚,史鹏辉,许耀照,孙佳,方彦,杨刚,武军艳,孔德晶,孙万仓. 白菜型冬油菜铜锌超氧化物歧化酶(Cu/Zn-SOD)基因的克隆及其在低温条件下的表达分析[J]. 作物学报, 2014, 40(04): 636-643. |
|