欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1997-2007.doi: 10.3724/SP.J.1006.2020.01034

• 研究简报 • 上一篇    下一篇

新疆冬小麦品种农艺及产量性状遗传多样性分析

马艳明1,2(), 冯智宇1, 王威2, 张胜军3, 郭营4, 倪中福1, 刘杰1,*()   

  1. 1中国农业大学农学院, 北京 100193
    2新疆农业科学院农作物品种资源研究所, 新疆乌鲁木齐 830091
    3伊犁州农业科学研究所, 新疆伊宁 835011
    4山东农业大学农学院, 山东泰安 271018
  • 收稿日期:2020-04-16 接受日期:2020-07-02 出版日期:2020-08-17 网络出版日期:2020-04-28
  • 通讯作者: 刘杰
  • 基金资助:
    国家科技部、财政部国家农作物种质资源共享服务平台(新疆)项目(NICGR2015-029)

Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits

MA Yan-Ming1,2(), FENG Zhi-Yu1, WANG Wei2, ZHANG Sheng-Jun3, GUO Ying4, NI Zhong-Fu1, LIU Jie1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
    3Institute of Agricultural Sciences of Ili Prefecture, Yining 835011, Xinjiang, China
    4College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2020-04-16 Accepted:2020-07-02 Published:2020-08-17 Published online:2020-04-28
  • Contact: LIU Jie
  • Supported by:
    National Ministry of Science and Technology and the Ministry of Finance’s National Crop Germplasm Resources Sharing Service Plat-form (Xinjiang) Project(NICGR2015-029)

摘要:

产量是小麦育种最重要的目标性状之一, 而农艺性状能直观反映品种的优劣。为了研究新疆冬小麦品种资源农艺、产量性状遗传多样性演变以及对不同生态环境的适应性, 本研究以134份新疆冬小麦地方品种和54份现代育成品种为材料, 分别在新疆乌鲁木齐、新疆伊宁和山东泰安3个不同的生态试验点进行了连续2年的田间种植和农艺性状观察。结果表明, 9个农艺及产量性状的广义遗传力由大到小排序依次为: 株高>粒宽>籽粒长宽比>穗长>小穗数>千粒重>穗粒数>粒长>结实小穗数。进一步对9个农艺性状相关性进行分析, 证明各性状之间并不是相互独立的, 而是彼此相互关联。对新疆冬小麦地方品种与育成品种在不同生态环境下农艺性状的差异进行比较发现, 地方品种的株高、穗长、籽粒长宽比大于育成品种, 而穗粒数、千粒重、粒长、粒宽均小于育成品种, 育成品种农艺及产量性状的变异系数高于地方品种, 体现出近年来新疆小麦育种对株高、穗长、小穗数、穗粒数、籽粒长宽比等农艺性状的重点改良。以上研究结果可为不同地域小麦育种亲本的选择提供重要的参考依据。

关键词: 新疆, 冬小麦, 地方品种, 育成品种, 农艺及产量性状, 多样性

Abstract:

Grain yield is one of the most important goals in wheat breeding, and agronomic or yield-related traits can directly reflect the characteristics of varieties. In order to determine the evolution of genetic diversity in agronomic traits of Xinjiang winter wheat varieties and their adaptabilities to different ecological environments, 134 winter wheat landraces and 54 moderns bred varieties from Xinjiang were selected for agronomic trait investigation. They were planted in three different ecological environments (Urumqi and Yining in Xinjiang province, and Tai’an in Shandong province) for two consecutive growth seasons, and nine agronomic and yield-related traits were surveyed and analyzed. The estimated broad sense heritability of nine agronomic and yield traits was in descending order: plant height > grain width > grain length/width ratio > spike length > spikelet number > thousand- kernel weight > grain number per spike > grain length > fertile spikelet number. Correlation analyses of nine agronomic and yield traits showed that these traits were correlated with each other. It was found that the plant height, spike length and grain length/width ratio of landraces were higher than that in modern bred varieties, but the grain number per spike, thousand kernel weight, grain length and grain width in landraces were less than that in modern bred varieties. However, the correlation coefficient of these nine traits was higher in modern bred varieties than that in landraces. These variations reflected the evolution of Xinjiang winter wheat varieties in agronomic traits in recent years. This study may provide important information for breeders to select the breeding parents in different winter wheat regions.

Key words: Xinjiang, winter wheat, landrace, modern bred varieties, agronomic and yield-related traits, genetic diversity

表1

试验点情况说明"

序号
No.
编号
Code
年份
Year
地点
Location
经度
Longitude
纬度
Latitude
E1 UR2017 2017 新疆乌鲁木齐Urumqi, Xinjiang 86.22°E 44.31°N
E2 UR2018 2018 新疆乌鲁木齐Urumqi, Xinjiang 86.22°E 44.31°N
E3 YN2017 2017 新疆伊宁Yining, Xinjiang 81.32°E 43.92°N
E4 YN2018 2018 新疆伊宁Yining, Xinjiang 81.32°E 43.92°N
E5 TA2017 2017 山东泰安Tai’an, Shandong 117.17°E 36.17°N
E6 TA2018 2018 山东泰安Tai’an, Shandong 117.17°E 36.17°N

表2

188份小麦品种目标性状描述性统计分析"

性状
Trait
环境
Environment
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
广义遗传力
H2 (%)
株高 E1 47.97 142.40 114.25 22.31 19.53 92.58
PH (cm) E2 48.48 146.34 116.56 20.12 17.26
E3 47.34 147.82 114.24 18.56 16.25
E4 53.00 148.20 112.94 19.10 16.91
E5 59.68 144.40 117.14 15.54 13.27
E6 55.02 136.48 112.97 14.50 12.83
穗长 E1 7.40 15.28 11.07 1.31 11.81 79.61
SL (cm) E2 7.62 15.61 11.41 1.42 12.41
E3 7.60 15.36 11.25 1.58 14.01
E4 8.22 16.50 11.95 1.56 13.05
E5 8.60 17.47 11.93 1.45 12.12
E6 8.18 17.54 11.43 1.46 13.16
小穗数 E1 16.40 26.00 19.91 1.41 7.10 75.26
SN (个) E2 15.27 25.41 20.45 1.70 8.15
E3 15.25 25.00 20.58 1.68 8.17
E4 15.00 26.20 20.47 2.05 10.01
E5 16.80 28.00 20.13 1.51 7.50
E6 16.20 25.40 20.51 1.58 7.72
结实小穗数 E1 16.00 26.00 19.10 1.36 7.10 60.44
FSN (个) E2 15.18 24.16 19.34 1.51 7.61
E3 15.25 24.00 19.71 1.59 8.22
E4 15.00 25.20 19.46 1.90 9.30
E5 15.20 27.20 19.89 1.57 7.95
E6 14.80 29.00 19.67 1.76 9.45
穗粒数 E1 26.43 82.00 46.82 7.02 14.98 68.21
GNPS (个) E2 28.56 83.80 49.60 6.59 13.29
E3 24.40 83.60 52.23 8.54 16.35
E4 27.80 80.00 51.95 9.95 19.15
E5 25.60 75.00 47.98 7.85 16.36
E6 21.90 73.50 42.21 8.29 19.64
性状
Trait
环境
Environment
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
广义遗传力
H2 (%)
千粒重 E1 17.97 48.72 24.29 5.16 21.24 71.56
TKW (g) E2 13.90 49.89 25.63 4.96 19.35
E3 12.30 43.90 24.57 4.23 29.43
E4 13.49 43.78 23.76 4.07 17.13
E5 12.12 48.91 25.49 6.97 27.34
E6 19.78 52.51 29.70 6.98 23.50
粒长 E1 5.92 8.85 7.38 0.46 6.23 64.25
GL (mm) E2 5.92 8.18 6.94 0.49 7.06
E3 5.76 7.90 6.46 0.34 5.26
E4 5.73 8.10 6.48 0.41 6.33
E5 5.70 7.61 6.43 0.35 5.44
E6 5.71 7.63 6.48 0.35 5.40
粒宽 E1 2.29 3.63 3.23 0.36 11.11 83.90
GW (mm) E2 2.14 3.68 3.17 0.26 8.12
E3 2.24 3.65 2.72 0.33 12.33
E4 2.18 3.58 2.63 0.26 9.68
E5 2.26 3.54 2.67 0.27 10.06
E6 2.35 3.52 2.78 0.26 9.32
粒长/粒宽 E1 1.85 2.88 2.33 0.23 10.01 80.02
GL/GW E2 1.88 2.68 2.24 0.18 8.13
E3 1.88 3.00 2.45 0.26 10.61
E4 1.99 3.00 2.51 0.19 7.37
E5 1.79 2.95 2.38 0.23 9.85
E6 1.85 2.88 2.33 0.23 10.01

表3

不同环境下各农艺产量性状相关系数分析"

性状
Trait
株高
PH
穗长
SL
结实小穗数
FSN
小穗数
SN
穗粒数
GNPS
千粒重
TKW
粒长
GL
粒宽
GW
籽粒长宽比
GL/GW
PH E1 0.486** 0.258** 0.319** -0.496** -0.612** 0.458** -0.099 -0.451**
SL 0.597** 0.668** 0.615** 0.106 -0.299** 0.385** 0.090 -0.285**
FSN 0.527** 0.710** 0.881** 0.346** -0.119 0.205** 0.098 -0.134
SN 0.575** 0.638** 0.934** 0.248** -0.100 0.088 0.099 -0.027
GNPS -0.247** 0.296** 0.378** 0.234** 0.237** -0.147 0.038 0.174*
TKW -0.368** -0.129 -0.200** -0.273** -0.009 -0.614** 0.186* 0.661**
GL 0.376** 0.433** 0.111 0.061 0.010 -0.345** 0.081 -0.782**
GW 0.003 0.160* -0.044 -0.134 -0.013 0.355** 0.284** 0.482**
GL/GW -0.364** -0.242** -0.180* -0.215** -0.010 0.629** -0.562** 0.620** E2
PH E3 0.530** 0.461** 0.531** -0.238** -0.305** 0.355** -0.188* -0.421**
SL 0.430** 0.585** 0.498** 0.046 -0.187* 0.272** 0.135 -0.194*
FSN 0.200** 0.332** 0.862** 0.329** -0.086 0.096 0.032 -0.072
SN 0.332** 0.394** 0.929** 0.179* -0.116 0.041 -0.134 -0.110
GNPS -0.189* -0.035 0.617** 0.448** 0.240** -0.343** -0.109 0.274**
TKW -0.015 -0.043 0.122 0.020 0.183* -0.680** 0.248** 0.756**
GL 0.085 0.193* -0.253** -0.173* -0.375** -0.474** 0.052 -0.883**
GW -0.358** -0.145 -0.128 -0.197* 0.110 0.435** 0.048 0.395**
GL/GW -0.341** -0.255 0.131 0.024 0.371** 0.639** -0.775** 0.562** E4
PH E5 0.427** 0.312** 0.234** -0.281** -0.266** 0.237** -0.145 -0.336**
SL 0.376** 0.483** 0.503** 0.153* -0.121 0.174* 0.096 -0.125
FSN 0.179* 0.184* 0.932** 0.433** 0.157* -0.269** -0.036 0.245**
SN 0.192** 0.167* 0.908** 0.319** 0.077 -0.219** -0.087 0.166*
GNPS -0.367** -0.001 0.344** 0.207** 0.271** -0.313** 0.068 0.330**
TKW -0.439** -0.150* 0.150* 0.053 0.420** -0.666** 0.537** 0.954**
GL 0.419** 0.117 -0.229** -0.137 -0.355** -0.695** 0.217** -0.808**
GW 0.079 -0.004 -0.110 -0.097 0.061 0.167* 0.456** 0.374
GL/GW -0.416** -0.134 0.196** 0.096 0.439** 0.889** -0.834** 0.098 E6

表4

地方品种与现代育成品种间表型性状的简单方差分析"

性状
Trait
项目
Item
平方和
Quadratic sum
自由度
Degree of freedom
均方
Mean square
F 显著性
Significance
株高PH 组间Between groups 145,021.238 1 145,021.238 743.749 0.000
组内Within group 210,975.788 1082 194.987
总计Total 355,997.027 1083
穗长SL 组间Between groups 238.782 1 238.782 115.540 0.000
组内Within group 2,236.119 1082 2.067
总计Total 2,474.900 1083
小穗数SN 组间Between groups 33.791 1 33.791 11.252 0.001
组内Within group 3,249.439 1082 3.003
总计Total 3,283.229 1083
结实小穗数FSN 组间Between groups 2.206 1 2.206 0.735 0.392
组内Within group 3,248.686 1082 3.002
总计Total 3,250.893 1083
穗粒数GNPS 组间Between groups 7,840.371 1 7840.371 113.963 0.000
组内Within group 74,438.959 1082 68.798
总计Total 82,279.330 1083
千粒重TKW 组间Between groups 11,482.793 1 11,482.793 200.318 0.000
组内Within group 62,023.167 1082 57.323
总计Total 73,505.960 1083
粒长GL 组间Between groups 5.075 1 5.075 24.223 0.000
组内Within group 226.885 1083 0.209
总计Total 231.960 1084
粒宽GW 组间Between groups 30.871 1 30.871 321.933 0.000
组内Within group 103.851 1083 0.096
总计Total 134.722 1084
粒长/粒宽GL/GW 组间Between groups 12.673 1 12.673 311.085 0.000
组内Within group 44.120 1083 0.041
总计Total 56.793 1084

表5

地方品种与现代育成品种间农艺产量性状比较"

性状
Trait
环境
Environment
地方品种Landraces 现代育成品种Modern bred varieties 各性状
均值差(L-C)
MD
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
株高 E1 103.61-142.40 117.30 8.24 6.57 47.97-128.99 86.82 22.07 25.42 30.48
PH (cm) E2 101.64-146.34 119.13 7.67 6.13 48.48-126.19 90.67 23.74 26.18 28.46
E3 101.57-147.82 121.56 8.13 6.69 47.34-132.20 93.53 23.63 25.27 28.03
E4 103.30-148.20 119.74 11.78 9.84 53.00-137.20 93.68 22.55 24.07 26.06
E5 97.84-144.40 121.76 9.30 7.64 59.68-139.42 105.55 21.18 20.07 16.21
E6 99.20-136.48 118.54 6.51 5.49 55.02-132.26 98.03 18.90 19.28 20.52
穗长 E1 8.61-14.48 11.36 1.05 9.20 7.40-15.28 10.35 1.60 15.42 1.01
SL (cm) E2 9.32-15.10 11.30 1.09 9.24 7.62-15.61 10.27 1.67 16.25 1.03
E3 7.60-15.36 11.54 1.40 12.14 7.72-14.80 10.43 1.76 16.90 1.11
E4 8.30-16.50 11.79 1.25 10.15 8.22-15.06 10.69 1.91 17.43 1.10
E5 8.60-16.98 12.06 1.36 11.28 9.30-17.47 11.15 1.61 13.85 0.91
性状
Trait
环境
Environment
地方品种Landraces 现代育成品种Modern bred varieties 各性状
均值差(L-C)
MD
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
E6 8.18-17.05 11.90 1.39 12.31 9.26-17.54 10.96 1.58 14.75 0.94
小穗数(个)
SN
E1 17.00-22.62 20.01 1.04 5.20 16.40-26.00 19.69 2.06 10.46 0.31
E2 16.43-25.41 21.24 1.23 5.79 15.27-24.28 19.79 2.35 11.87 0.43
E3 16.00-25.50 20.78 1.46 7.03 15.25-24.50 20.04 2.12 10.58 0.67
E4 15.00-26.20 20.55 1.67 7.75 16.00-26.20 20.24 2.72 13.44 0.31
E5 16.80-24.50 20.85 1.32 6.33 18.00-28.00 21.81 1.90 8.71 -0.96
E6 16.20-24.40 20.36 1.47 7.22 17.60-25.40 21.67 1.74 8.03 -1.31
结实小
穗数(个)
FSN
E1 16.22-22.04 19.18 1.13 5.89 16.00-26.00 18.91 1.80 8.88 0.27
E2 16.43-22.30 19.22 1.23 6.40 15.18-24.16 18.90 1.85 9.18 0.32
E3 15.60-23.00 19.44 1.52 7.82 15.25-24.00 19.10 1.69 8.40 0.34
E4 15.00-24.00 20.46 1.72 8.41 15.20-25.20 19.48 2.07 10.11 0.98
E5 15.20-23.30 19.37 1.33 6.87 16.80-27.20 20.58 1.78 8.65 -1.21
E6 14.80-25.00 19.21 1.44 7.50 16.20-29.00 20.34 1.67 8.21 -1.13
穗粒数(个)
GNPS
E1 26.43-56.47 44.85 4.38 9.77 32.61-82.00 51.71 9.55 18.47 -6.86
E2 28.56-62.00 49.06 4.65 9.48 33.24-83.80 51.22 10.38 20.27 -2.16
E3 24.40-70.20 50.08 6.37 12.71 31.33-83.60 58.33 8.74 14.99 -8.26
E4 27.80-77.80 50.25 6.23 12.40 34.00-80.00 56.77 10.41 18.33 -6.52
E5 25.60-62.50 46.10 6.07 13.17 29.00-75.00 52.71 9.69 18.39 -6.61
E6 21.90-55.00 39.24 6.44 16.41 36.60-73.50 50.15 7.46 14.88 -10.91
千粒重 E1 17.97-31.53 23.13 3.95 13.95 25.90-48.72 33.44 5.62 16.81 -10.31
TKW (g) E2 13.90-32.72 24.09 4.07 16.89 26.41-49.89 35.56 6.23 17.51 -11.47
E3 12.30-30.90 21.68 4.15 14.47 23.40-42.60 32.02 6.05 18.89 -10.34
E4 23.49-31.78 22.16 4.27 14.16 24.87-43.78 34.30 5.99 17.46 -12.14
E5 20.12-33.26 22.81 4.39 19.25 24.29-48.91 32.39 5.67 17.51 -10.01
E6 19.78-34.71 22.38 4.43 19.79 23.30-52.51 35.91 5.93 17.48 -11.10
粒长 E1 5.92-8.18 7.32 0.47 6.47 6.73-8.85 7.55 0.39 5.11 -0.24
GL (mm) E2 5.92-8.18 6.89 0.51 7.36 6.21-7.89 7.06 0.40 5.69 -0.16
E3 5.76-7.20 6.37 0.29 4.63 6.02-7.90 6.67 0.35 5.22 -0.29
E4 5.73-8.10 6.41 0.39 6.01 6.15-7.69 6.74 0.37 5.55 -0.33
E5 5.70-7.27 6.40 0.35 5.43 5.83-7.61 6.50 0.34 5.16 -0.10
E6 5.71-7.63 6.45 0.36 5.57 5.80-7.57 6.50 0.33 5.05 -0.05
粒宽 E1 2.29-3.31 2.48 0.17 6.85 2.69-3.63 3.01 0.25 8.04 -0.63
GW (mm) E2 2.14-3.27 2.37 0.18 7.60 2.78-3.68 2.96 0.23 7.77 -0.59
E3 2.24-3.41 2.55 0.19 7.49 2.66-3.65 3.14 0.24 7.53 -0.59
E4 2.18-3.24 2.55 0.19 7.45 2.56-3.58 2.93 0.24 8.14 -0.38
E5 2.26-3.14 2.56 0.15 5.94 2.52-3.54 2.97 0.25 8.42 -0.41
E6 2.35-3.25 2.57 0.18 6.67 2.52-3.52 3.01 0.23 7.64 -0.44
粒长/粒宽 E1 1.98-2.88 2.41 0.15 6.22 1.85-2.46 2.11 0.14 6.65 0.30
GL/GW E2 1.91-2.68 2.28 0.13 5.56 1.88-2.62 2.14 0.14 6.72 0.14
E3 2.00-3.00 2.56 0.20 7.69 1.88-2.55 2.17 0.17 8.03 0.39
E4 2.05-3.00 2.56 0.17 6.59 1.99-2.70 2.37 0.17 7.15 0.19
E5 1.79-2.94 2.54 0.16 6.39 1.94-2.62 2.23 0.19 8.70 0.31
E6 1.87-2.88 2.45 0.20 8.21 1.79-2.67 2.18 0.20 9.15 0.27

图1

新疆冬小麦地方品种与现代育成品种农艺及产量性状差异 *表示差异显著(P < 0.05), **表示差异极显著(P < 0.01); ns表示差异不显著。"

[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭 . 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X . Wheat production and technology improvement in China. J Agric, 2018,8(1):99-106 (in Chinese with English abstract).
[2] 易腾飞 . 中国冬麦区小麦品种农艺性状与品质性状的全基因组关联分析. 河北农业大学硕士学位论文, 河北保定, 2018.
Yi T F . Genome-wide Association Study of Agronomic Traits and Quality Traits of Wheat Varieties in the Winter Wheat Region of China. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2018 (in Chinese with English abstract).
[3] 中国农学会遗传资源学会编. 中国作物遗传资源. 北京: 中国农业出版社, 1994. pp 312-315.
Society of Crop Genetic Resources Chinese Association of Agricultural Science Societies. Crop Genetic Resources in China. Beijing: China Agriculture Press, 1994. pp 312-315(in Chinese).
[4] 庄巧生 . 中国小麦品种改良及系谱分析. 中国农业出版社, 2003. pp 52, 393-419.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 52, 393-419(in Chinese).
[5] 金善宝 . 中国小麦生态. 北京: 科学出版社, 1991. pp 9-30.
Jin S B. . Chinese Wheat Ecology. Beijing: Science Press, 1991. pp 9-30(in Chinese).
[6] 金善宝 . 小麦生态理论与应用. 杭州: 浙江科技出版社, 1992. pp 4-11.
Jin S B. Wheat Ecological Theory and Application. Hangzhou: Zhejiang Science and Technology Press, 1992. pp 4-11(in Chinese).
[7] 李立会, 李秀全 . 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 81-83.
Li L H, Li X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006. pp 81-83(in Chinese).
[8] 董玉琛, 郑殿升 . 中国小麦遗传资源. 北京: 中国农业出版社, 2000. pp 16-30.
Dong Y C, Zheng D S. Chinese Wheat Genetic Resources. Beijing: China Agriculture Press, 2000. pp 16-30(in Chinese).
[9] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生 . 我国育成小麦品种的遗传多样性演变. 中国科学C辑, 2005,35:408-415.
Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S . Evolution of genetic diversity of wheat varieties bred in China. Sci China (Ser C), 2005,35:408-415 (in Chinese with English abstract).
[10] 刘三才, 郑殿升, 曹永生, 宋春华, 陈梦英 . 中国小麦选育品种与地方品种的遗传多样性. 中国农业科学, 2000,33(4):20-24.
Liu S C, Zheng D S, Cao Y S, Song C H, Chen M Y . Genetic diversity of landrace and bred varieties of wheat in China. Sci Agric Sin, 2000,33(4):20-24 (in Chinese with English abstract).
[11] 陈雪燕, 王亚娟, 雒景吾, 吉万全 . 陕西省小麦地方品种主要性状的遗传多样性研究. 麦类作物学报, 2007,27:456-460.
doi: 10.7606/j.issn.1009-1041.2007.03.110
Chen X Y, Wang Y J, Luo J W, Ji W Q . Genetic diversity in main characters of wheat landraces in Shaanxi province. J Triticeae Crop, 2007,27:456-460 (in Chinese with English abstract).
[12] 李煦征 . 江苏省小麦品种更替过程中生态型演化与区域差异分析. 南京农业大学硕士学位论文, 江苏南京, 2007.
Li X Z . Research on the Evolution of Ecotypes of Wheat Cultivars and Differences of Regions in Jiangsu. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007 (in Chinese with English abstract).
[13] 马艳明, 刘志勇, 肖菁, 热依拉木, 张金波, 苗昊翠, 严勇亮 . 新疆冬小麦地方品种主要性状的变异. 麦类作物学报, 2011,31:159-165.
doi: 10.7606/j.issn.1009-1041.2011.01.028
Ma Y M, Liu Z Y, Xiao J, Reyilamu, Zhang J B, Miao H C, Yan Y L . Analysis on main traits variation of winter wheat landrace varieties in Xinjiang. J Triticeae Crop, 2001,31:159-165 (in Chinese with English abstract).
[14] 王林海, 王晓伟, 詹克慧, 马东钦, 许兰杰 . 黄淮麦区部分小麦种质资源农艺性状的聚类分析. 中国农学通报, 2008,24(4):186-191.
Wang L H, Wang X W, Zhan K H, Ma D Q, Xu L J . Cluster analysis of some wheat germplasms in Huanghuai area based on agronomic traits. Chin Agric Sci Bull, 2008,24(4):186-191 (in Chinese with English abstract).
[15] 李志波, 王睿辉, 张茶, 梁虹, 马峙英, 赵玉欣, 王静华 . 河北省小麦品种基于农艺性状的遗传多样性分析. 植物遗传资源学报, 2009,10:436-442.
Li Z B, Wang R H, Zhang C, Liang H, Ma Z Y, Zhao Y X, Wang J H . Genetic diversity analysis of bread wheat (Triticum aestivum L.) cultivars in Hebei province based on agronomic traits. J Plant Genet Resour, 2009,10:436-442 (in Chinese with English abstract).
[16] 马艳明, 刘志勇, 热依拉木, 肖菁 . 新疆冬小麦地方品种与选育品种遗传性状比较分析. 新疆农业科学, 2011,48:634-638.
Ma Y M, Liu Z Y, Reyilamu, Xiao J . Comparative analysis of genetic characters about landrace and breeding winter wheat varieties in Xinjiang. Xinjiang Agric Sci, 2011,48:634-638 (in Chinese with English abstract).
[17] 王小国, 梁红艳, 张薇 . 新疆春小麦种质资源农艺性状和品质性状的遗传多样性分析. 新疆农业科学, 2012,49:796-801.
Wang X G, Liang H Y, Zhang W . Analysis of genetic diversity of Xinjiang spring wheat agronomic characters and quality characters. Xinjiang Agric Sci, 2012,49:796-801 (in Chinese with English abstract).
[18] 程西永 . 不同区域小麦种质资源遗传多样性研究. 河南农业大学博士学位论文, 河南郑州, 2010.
Cheng X Y . Genetic Diversity of Wheat Germplasm in Different Regions. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2010 (in Chinese with English abstract).
[19] 曾潮武, 梁晓东, 李建疆 . 新疆春小麦种质资源主要农艺性状的遗传多样性分析. 分子植物育种, 2017,15:3740-3750.
Zeng C W, Liang X D, Li J J . Genetic diversity analysis in main characters of spring wheat germplasm in Xinjiang. Mol Plant Breed, 2017,15:3740-3750 (in Chinese with English abstract).
[20] 田笑明 . 新疆冬小麦品种更替中农艺性状演变和发展方向的研究. 作物学报, 1991,17:297-303.
Tian X M . Study on evolution and its tendency of agronomic characters of winter wheat during cultivar alternation in Xinjiang. Acta Agron Sin, 1991,17:297-303 (in Chinese with English abstract).
[21] Sun Q, Miao C, Hanel M, Borthwick A G, Duan Q, Ji D, Li H . Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ Int, 2019,128:125-136.
doi: 10.1016/j.envint.2019.04.025 pmid: 31048130
[22] Absentis D . Save and Grow: A Policymaker’s Guide to Sustainable Intensification of Smallholder Crop Production. Italy: FAO, 2011.
[23] 王亚飞, 李世景, 徐萍, 张正斌, 景蕊莲 . 黄淮和长江中下游冬麦区小麦品种(系)农艺性状及其聚类分析. 中国生态农业学报, 2020,28:395-404.
Wang Y F, Li S J, Xu P, Zhang Z B, Jing R L . Agronomic traits and cluster analysis of winter wheat varieties (lines) in the Huanghuai and the middle/lower reaches of the Yangtze River wheat areas. Chin J Eco-Agric, 2020,28:395-404 (in Chinese with English abstract).
[24] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环 . 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020,46:365-384.
Xie S F, Ji W Q, Zhang Y Y, Zhang J J, Hu W G, Li J, Wang C Y, Zhang H, Chen C H . Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat. Acta Agron Sin, 2020,46:365-384 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[4] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[5] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[6] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[7] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[11] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[12] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[13] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[14] 闫彩霞,王娟,张浩,李春娟,宋秀霞,孙全喜,苑翠玲,赵小波,单世华. 基于表型性状构建中国花生地方品种骨干种质[J]. 作物学报, 2020, 46(4): 520-531.
[15] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!