作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1124-1137.doi: 10.3724/SP.J.1006.2021.04150
许静1(), 潘丽娟1, 李昊远2, 王通1, 陈娜1, 陈明娜1, 王冕1, 禹山林1, 侯艳华2,*(), 迟晓元1,*()
XU Jing1(), PAN Li-Juan1, LI Hao-Yuan2, WANG Tong1, CHEN Na1, CHEN Ming-Na1, WANG Mian1, YU Shan-Lin1, HOU Yan-Hua2,*(), CHI Xiao-Yuan1,*()
摘要:
为研究不同发育时期花生籽仁油脂合成过程中基因表达调控模式, 本研究以高油酸、中油花生品系F18和低油酸、低油花生品种‘鲁花6号’为材料, 对下针后10、30、40、60 DAP (days after pegging)的花生种子进行表达谱芯片测序。结果表明, 130、3556、2783个基因分别在30、40、60 DAP时期差异表达。GO注释和KEGG富集结果显示, 差异表达的基因主要富集在脂肪酸合成和光合等代谢进程中, 其中FAB2、FAD2、WRI1等主要参与油酸的积累, 参与光合作用的基因均为捕光叶绿素a/b结合蛋白, 全部上调表达。代谢通路图结果表明, 籽仁发育的40 DAP和60 DAP时期, 脂肪酸合成途径的基因均上调表达。研究结果为花生油脂代谢的分子机制提供理论基础, 同时也为花生品质改良贡献了基因资源。
[1] | Sarvamangala C, Gowda M, Varshney R. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011,122:49-59. |
[2] | Huth P J, Fulgoni III V L, Larson B T. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils. Adv Nutr, 2015,6:674-693. |
[3] | 陈玉梅, 李璐璐, 陈锦玲, 徐媛, 李惠敏, 秦新民. 基于转录组测序的花生籽粒不同发育时期油脂合成相关基因差异表达分析. 河南农业科学, 2019,48(7):24-37. |
Chen Y M, Li L L, Chen J L, Xu Y, Li H M, Qin X M. Differential expression analysis of genes related to lipid synthesis through transcriptome sequencing during different developmental stages in peanut seed. J Henan Agric Sci, 2019,48(7):24-37 (in Chinese with English abstract). | |
[4] | Chi X Y, Yang Q L, Pan L J, Chen N, Wang T, Wang M, Yang Z, Guan X, Yu S L. Isolation and expression analysis of glycerol-3-phosphate acyltransferase genes from peanuts (Arachis hypogaea L.). Grasas y Aceites, 2015,66:e093. |
[5] | Chi X Y, Hu R B, Zhang X W, Chen M N, Chen N, Pan L J, Wang T, Wang M, Yang Z, Wang Q F, Yu S L. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014,9:e105834. |
[6] | Zheng L, Shockey J, Guo F, Shi L M, Li X G, Shan L, Wan S B, Peng Z Y. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: the peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. J Plant Physiol, 2017,219:62-70. |
[7] | Chi X Y, Dong F, Yang Q L, Chen M N, Chen N, Pan L J, Wang T, Wang M, Yang Z, He Y N, Yu S L. Expression and characterization of Lysophosphatidyl acyltransferase genes from peanut (Arachis hypogaea L.). Res Crops, 2014,15:141-153. |
[8] | Chen S L, Huang J Q, Lei Y, Zhang Y T, Ren X P, Chen Y N, Jiang H F, Yan L Y, Li Y R, Liao B S. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. J Biosci, 2012,37:1029-1039. |
[9] | 皮广静, 刘风珍, 万勇善, 张昆, 吕玉英, 张秀荣. 花生高油品系农大D666及其亲本油脂合成酰基转移酶基因的表达分析. 分子植物育种, 2018,16:1057-1065. |
Pi G J, Liu F Z, Wan Y S, Zhang K, Lyu Y Y, Zhang X R. Expression analysis of Acyltransferase genes involved in oil biosynthesis in high-oil peanut line Nongda D666 and parents. Mol Plant Breed, 2018,16:1057-1065 (in Chinese with English abstract). | |
[10] | Chi X Y, Yang Q L, Pan L J, Chen M N, He Y N, Yang Z, Yu S L. Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep, 2011,30:1393-1404. |
[11] | Chi X Y, Zhang Z M, Chen N, Zhang X W, Wang M, Chen M N, Wang T, Pan L J, Chen J, Yang Z, Guan X Y, Yu S L. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017,12:e0189759. |
[12] | Focks N, Benning C. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol, 1998,118:91-101. |
[13] | Pouvreau B, Baud B, Vernoud V, Morin V, Py C, Gendrot G, Pichon J P, Rouster J, Paul W, Rogowsky P M. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol, 2011,156:674-686. |
[14] | 孙金波, 石素华, 杨利, 李凤丽, 王兴军, 赵术珍. 花生WRI1基因家族的全基因组与表达谱分析. 花生学报, 2020,49(1):9-18. |
Sun J B, Shi S H, Yang L, Li F L, Wang X J, Zhao S Z. Genome-wide analysis of WRI1 gene family and their expression profiles in peanut. J Peanut Sci, 2020,49(1):9-18 (in Chinese with English abstract). | |
[15] | Harwood H J. Oleochemicals as a fuel: mechanical and economic feasibility. J Am Oil Chem Soci, 1984,61:315-324. |
[16] | 迟晓元, 郝翠翠, 潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 杨珍, 梁成伟. 不同花生品种脂肪酸组成及其积累规律的研究. 花生学报, 2016,45(3):32-36. |
Chi X Y, Hao C C, Pan L J, Chen N, Chen M N, Wang T, Wang M, Yang Z, Liang C W. Fatty acid accumulation pattern in different types of peanut. J Peanut Sci, 2016,45:32-36 (in Chinese with English abstract). | |
[17] | Yu P, Wang C H, Xu Q, Feng Y, Yuan X P, Yu H Y, Wang Y P, Tang S X, Wei X H. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics, 2011,12:372. |
[18] | 陈娜, 迟晓元, 程果, 潘丽娟, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生中低温胁迫相关转录因子基因的筛选. 核农学报, 2016,30(1):19-27. |
Chen N, Chi X Y, Cheng G, Pan L J, Chen M N, Wang T, Wang M, Yang Z, Yu S L. Profiling of genes encoding cold stress-related transcription factors in peanut. J Nucl Agric Sci, 2016,30:19-27 (in Chinese with English abstract). | |
[19] | Barbour J A, Howe P R, Buckley J D, Bryan J, Coates A M. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr Neurosci, 2017,20:555-562. |
[20] | 姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009,35:25-32. |
Jiang H F, Ren X P, Huang J Q, Lei Y, Liao B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agron Sin, 2009,35:25-32 (in Chinese with English abstract). | |
[21] | 于明洋, 孙明明, 郭悦, 姜平平, 雷永, 黄冰艳, 冯素萍, 郭宝珠, 隋炯明, 王晶珊. 利用回交法快速选育高油酸花生新品系. 作物学报, 2017,43:855-861. |
Yu M Y, Sun M M, Guo Y, Jiang P P, Lei Y, Huang B Y, Feng S P, Guo B Z, Sui J M, Wang J S. Breeding new peanut line with high oleic acid content using backcross method. Acta Agron Sin, 2017,43:855-861 (in Chinese with English abstract). | |
[22] | 陈四龙. 花生油脂合成相关基因的鉴定与功能研究. 中国农业科学院研究生院博士学位论文,北京, 2012, pp 60-61. |
Chen S L. Identification and Functional Analysis of Lipid Biosynthesis Related Genes in Peanut (Arachis hypogaea L.). PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing,China, 2012, pp 60-61 (in Chinese with English abstract). | |
[23] |
Li F P, Ma C Z, Wang X, Gao C B, Zhang J F, Wang Y Y, Cong N, Li X H, Wen J, Yi B, Shen J X, Tu J X, Fu T D. Characterization of sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L. BMC Plant Biol, 2011,11:168.
doi: 10.1186/1471-2229-11-168 |
[24] |
Zaborowska Z, Starzycki M, Femiak I, Swiderski M, Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase: organization, expression and potential application. Acta Biochim Pol, 2002,49:29-42.
pmid: 12136953 |
[25] | Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001,41:522-526. |
[26] | 官梅, 李栒, 官春云. 利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因. 作物学报, 2010,36:968-978. |
Guan M, Li X, Guan C Y. Differentially expressed genes in oleic acid synthesis of Brassica napus by detected gene chip. Acta Agron Sin, 2010,36:968-978 (in Chinese with English abstract). | |
[27] | 李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展. 分子植物育种, 2016,14:2509-2518. |
Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant. Mol Plant Breed, 2016,14:2509-2518 (in Chinese with English abstract). | |
[28] | Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J, 2009,60:476-487. |
[29] | Fukuda N, Ikawa Y, Aoyagi T, Kozaki A. Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site. Plant Mol Biol, 2013,82:473-483. |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[7] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[10] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[11] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[12] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[13] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
|