欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1114-1123.doi: 10.3724/SP.J.1006.2021.02047

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析

陈灿(), 农保选(), 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷*(), 杨行海*()   

  1. 广西农业科学院水稻研究所/广西水稻遗传育种重点实验室, 广西南宁 530007
  • 收稿日期:2020-07-12 接受日期:2020-12-01 出版日期:2021-06-12 网络出版日期:2020-12-28
  • 通讯作者: 李丹婷,杨行海
  • 作者简介:陈灿, E-mail:chencan129@126.com|农保选, E-mail:nongbaoxuan88@gxaas.net
  • 基金资助:
    中央引导地方科技发展专项(桂科ZY19183020);广西创新驱动发展专项(AA17204045-1);广西自然科学基金项目(2020GXNSFAA259041);广西自然科学基金项目(2018GXNSFAA138124);广西自然科学基金项目(2017GXNSFBA198210);广西重大科技创新基地开放课题(2018-05-Z06-CX04);广西农业科学院发展基金(桂农科2019Z08)

Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi

CHEN Can(), NONG Bao-Xuan(), XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting*(), YANG Xing-Hai*()   

  1. Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
  • Received:2020-07-12 Accepted:2020-12-01 Published:2021-06-12 Published online:2020-12-28
  • Contact: LI Dan-Ting,YANG Xing-Hai
  • Supported by:
    The Special Fund of Local Science and Technology Development for the Central Guidance(桂科ZY19183020);The Guangxi Special Fund for Innovation-Driven Development(AA17204045-1);The Guangxi Natural Science Fund(2020GXNSFAA259041);The Guangxi Natural Science Fund(2018GXNSFAA138124);The Guangxi Natural Science Fund(2017GXNSFBA198210);The Opening Project of Major Science and Technology Innovation Base for Guangxi(2018-05-Z06-CX04);The Development Fund of Guangxi Academy of Agricultural Sciences(桂农科2019Z08)

摘要:

稻瘟病是水稻重要病害之一, 严重影响水稻的产量与品质。培育抗性品种是防治稻瘟病最经济、环保的方式。稻瘟病抗性基因的鉴定与挖掘是开展抗病育种的基础与前提。本课题组前期对419份广西水稻地方品种核心种质进行简化基因组测序, 获得208,993个高质量SNP标记。本研究采用苗期喷雾接种方法, 研究了该419份核心种质对7个稻瘟病生理小种的抗性, 并根据表型和基因型数据, 利用一般线性模型(general linear model, GLM)和混合线性模型(mixed linear model, MLM)进行全基因组关联分析。2种模型下共检测到20个位点, 其中GLM检测到20个位点, MLM检测到1个位点, Chr12_10803913位点在2种模型下都检测到。17个位点与前人定位的基因/QTLs重叠, 其余3个是新位点, 分别为Chr3_18302718、Chr3_18302744及Chr5_10379127位点。在20个显著关联位点上下游各150 kb的基因组区域中共筛选出候选基因323个, 初步确定8个候选基因与抗病相关, 其中LOC_Os12g18360 (Pita)、LOC_Os12g18729 (Ptr)为已知克隆的基因, LOC_Os03g32100LOC_Os03g32180LOC_Os05g18090为新位点附近筛选到的候选基因。本研究结果为稻瘟病抗性位点挖掘与稻瘟病相关基因克隆提供了科学依据。

关键词: 水稻, 稻瘟病, 全基因组关联分析, 候选基因

Abstract:

Blast disease is one of the most important rice diseases, which seriously affects the yield and quality in rice. In general, breeding resistant varieties is the most economical, environmental, and friendly way to control rice blast. Identification and mining of blast resistance genes are the basis and premise of disease resistance breeding. In our previous study, 419 core germplasms from Guangxi rice landraces were sequenced using specific-locus amplified fragment sequencing (SLAF-seq) technology, and 208,993 high-quality SNPs were identified. Spray inoculation at seedling stage was used to evaluate the resistance of the 419 germplasms to 7 strains. According to phenotype and genotype data, genome-wide association study (GWAS) for rice blast was performed using general linear model (GLM) and mixed linear model (MLM). A total of 20 loci were detected under the two models, including 20 loci detected by GLM and 1 locus detected by MLM. Chr12_10803913 locus was detected in both models. There were 17 loci, overlapping with previously reported genes/QTLs, while the remaining three loci were the first reported, including Chr3_18302718, Chr3_18302744, and Chr5_10379127. A total of 323 candidate genes were screened out in the genomic regions of 150 kb upstream and downstream of 20 significantly associated loci. Eight candidate genes were preliminarily determined to be related to disease resistance. Among them, both LOC_Os12g18360 (Pita) and LOC_Os12g18729 (Ptr) were known cloned genes, LOC_Os03g32100, LOC_Os03g32180, and LOC_Os05g18090 were selected as candidate genes near the three loci. The results provided the scientific basis for the mining of rice blast resistance loci and gene cloning.

Key words: rice, blast disease, genome-wide association study (GWAS), candidate genes

表1

不同稻瘟病小种接种下水稻苗期叶瘟抗性级别统计分析"

小种
Strain
抗级
Range
平均值±标准差
Mean±SE
变异系数
CV (%)
ZA9 1-9 5.03±1.49 29.62
ZA13 1-8 5.72±1.36 23.78
ZB1 1-7 4.29±1.44 33.57
ZB9 1-8 4.83±1.54 31.88
ZB13 1-7 3.80±1.53 40.26
ZC3 1-8 4.84±1.62 33.47
ZC13 1-7 2.93±1.40 47.78

图1

关联群体在7个不同稻瘟病生理小种接种下的叶瘟抗性级别分布"

图2

3个菌种下水稻稻瘟病抗性的全基因组关联研究 A、B、C分别表示GLM模型ZB9、ZC3、ZC13的曼哈顿图。D表示MLM模型ZC3的曼哈顿图。E、F、G分别表示GLM模型ZB9、ZC3、ZC13的QQ图。H表示MLM模型ZC3的QQ图。图中实心倒三角形为本文中显著性关联位点。"

表2

水稻稻瘟病显著关联的SNP位点及已定位的基因/QTL"

小种
Strain
染色体
Chr.
位置
Position
P
P-value
上游位点
Upstream loci
下游位点
Downstream loci
模型
Model
已知基因/QTL
Known genes/QTLs
ZB9 1 10,443,043 1.63E-06 10,293,043 10,593,043 GLM Pi-h2(t)
ZC3 1 8,116,727 1.54E-07 7,966,727 8,266,727 GLM Pi-sj9
ZC3 1 8,116,887 2.91E-07 7,966,887 8,266,887 GLM Pi-sj9
ZC3 3 18,302,718 3.60E-08 18,152,718 18,452,718 GLM
ZC3 3 18,302,744 1.35E-08 18,152,744 18,452,744 GLM
ZC3 5 10,379,127 2.32E-07 10,229,127 10,529,127 GLM
ZB9 8 6,776,078 4.99E-07 6,626,078 6,926,078 GLM Pizh, Pi42
小种
Strain
染色体
Chr.
位置
Position
P
P-value
上游位点
Upstream loci
下游位点
Downstream loci
模型
Model
已知基因/QTL
Known genes/QTLs
ZC13 12 10,917,077 9.44E-08 10,767,077 11,067,077 GLM Pi12, Pi157, Pi19(t), Pi20, Pi31(t), Pi42(t), Pi6(t), Pita, Pita2, Pi67, Pi39(t), Pi58(t), Pi57, Ptr
ZC13 12 10,919,541 3.98E-07 10,769,541 11,069,541 GLM
ZC3 12 10,629,609 6.56E-08 10,479,609 107,79,609 GLM
ZC3 12 10,796,961 1.84E-07 10,646,961 10,946,961 GLM
ZC3 12 10,801,871 1.30E-07 10,651,871 10,951,871 GLM
ZC3 12 10,803,744 7.39E-09 10,653,744 10,953,744 GLM
ZC3 12 10,803,791 3.45E-08 10,653,791 10,953,791 GLM
ZC3 12 10,803,913 9.20E-10 10,653,913 10,953,913 GLM
ZC3 12 10,816,142 4.90E-09 10,666,142 10,966,142 GLM
ZC3 12 10,816,145 8.24E-09 10,666,145 10,966,145 GLM
ZC3 12 10,816,166 8.24E-09 10,666,166 10,966,166 GLM
ZC3 12 10,816,338 8.01E-09 10,666,338 10,966,338 GLM
ZC3 12 10,926,790 2.35E-07 10,776,790 11,076,790 GLM
ZC3 12 10,803,913 3.93E-07 10,653,913 10,953,913 MLM

表3

候选基因信息"

基因名称
Gene name
物理位置
Physical position
基因注释
Gene annotation
LOC_Os01g14550 8,159,849-8,161,554 Pathogen-related protein, putative, expressed
LOC_Os01g14590 8,175,375-8,177,889 Pathogen-related protein, putative, expressed
LOC_Os03g32100 18,367,156-18,368,378 Spotted leaf 11, putative, expressed
LOC_Os03g32180 18,410,063-18,411,482 Polygalacturonase inhibitor 1 precursor, putative, expressed
LOC_Os05g18090 10,404,235-10,407,571 SHR5-receptor-like kinase, putative, expressed
LOC_Os12g18360 10,606,359-10,612,068 NB-ARC domain containing protein, expressed
LOC_Os12g18374 10,624,037-10,633,368 NB-ARC domain containing protein, expressed
LOC_Os12g18729 10,822,534-10,833,768 Expressed protein

图3

已定位的稻瘟病抗性基因与关联位点 倒三角形所指关联位点或关联位点所在区域。A: 1号染色体上已定位的稻瘟病基因; B: 12号染色体上与显著关联位点区域重叠的稻瘟病基因。"

[1] Ashkani S, Rafii M Y, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer F A, Akhtar M S, Nasehi A. Molecular breeding strategy and challenges towards the improvement of blast disease resistance in rice crop. Front Plant Sci, 2015,6:886.
[2] Sakulkoo W, Osés-Ruiz M, Garcia E O, Soanes D M, Littlejohn G R, Hacker C, Correia A, Valent B, Talbot N J. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science, 2018,359:1399-1403.
[3] Scheuermann K K, Raimondi J V, Marschalek R, Andrade A D, Wickert E. The Molecular Basis of Plant Genetic Diversity. Shanghai: InTech China, 2012. pp 331-356.
[4] Manandhar H K, Lyngs Jorgensen H J, Mathur S B, Smedegaard-Peterson V. Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology, 1998,88:735-739.
[5] Zeigler R S, Leong S A, Teng P S. Rice Blast Disease. Wallingford: CAB International, 1994. pp 626.
[6] 曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展. 中国水稻科学, 2019,33:489-498.
Cao N, Chen Y, Ji Z J, Zeng Y X, Yang C D, Liang Y. Recent progress in molecular mechanism of rice blast resistance. Chin J Rice Sci, 2019,33:489-498 (in Chinese with English abstract).
[7] Zheng C Q, Jiang N, Zhao X H, Yan T Z, Fu J, Li Y F, Wu Z X, Hu X C, Bai Z N, Liu T G, Xiao G, Zhou Y B, Chen L B, Wang K, Yang Y Z. Identification of the blast resistance gene Picl(t) from Chaling common wild rice (Oryza rufipogon Griff.). J Phytopathol, 2020,168:211-219.
[8] Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech, 2019,9:209.
doi: 10.1007/s13205-019-1738-0 pmid: 31093479
[9] Mgonja E M, Park C H, Kang H X, Balimponya E G, Opiyo S, Bellizzi M, Mutiga S K, Rotich F, Ganeshan V D, Mabagala R, Sneller C, Correll J, Zhou B, Talbot N J, Mitchell T K, Wang G L. Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology, 2017,107:1039-1046.
[10] Wang C H, Yang Y L, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014,14:311-321.
doi: 10.1186/s12870-014-0311-6 pmid: 25403621
[11] Kang H X, Wang Y, Peng S S, Zhang Y L, Xiao Y H, Wan D, Qu S H, Li Z Q, Yan S Y, Wang Z L, Liu W D, Ning Y S, Korniliev P, Leung H, Mezey J, Mccouch S R, Wang G L. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. Mol Plant Pathol, 2016,17:959-972.
[12] Lin H A, Chen S Y, Chang F Y, Tung C W, Chen Y C, Shen W C, Chen R S, Wu C W, Chung C L. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. Bot Stud, 2018,59:32.
[13] Li C G, Wang D, Peng S S, Chen Y, Su P, Chen J B, Zheng L M, Tan X Q, Liu J L, Xiao Y H, Kang H X, Zhang D Y, Wang G L, Liu Y. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. Rice, 2019,12:47.
pmid: 31309315
[14] Lu Q, Wang C H, Niu X J, Zhang M C, Xu Q, Feng Y, Yang Y L, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Detecting novel loci underlying rice blast resistance by integrating a genome-wide association study and RNA sequencing. Mol Breed, 2019,39:81.
[15] Yang X H, Xia X Z, Zeng Y, Nong B X, Zhang Z Q, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Deng G F, Li D T. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One, 2018,13:e0196690.
pmid: 29746484
[16] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 水稻糯性相关基因的全基因组关联分析. 植物学报, 2016,51:737-742.
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Genome-wide association study of genes related to waxiness in Oryza sativa. Chin Bull Bot, 2016,51:737-742 (in Chinese with English abstract).
[17] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 广西地方稻种资源核心种质红色种皮全基因组关联分析及鉴定两个新的Rc等位基因. 分子植物育种, 2017,15:1-6.
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Validation of the red pericarp gene from 419 rice landrace core collection in Guangxi using genome-wide association study and discovery of two novel Rc alleles. Mol Plant Breed, 2017,15:1-6 (in Chinese with English abstract).
[18] 农保选, 秦碧霞, 夏秀忠, 杨行海, 张宗琼, 曾宇, 刘驰, 蔡健和, 谢慧婷, 崔丽贤, 罗群昌, 邓国富, 刘丕庆, 李丹婷. 南方水稻黑条矮缩病苗期抗性的全基因组关联分析. 分子植物育种, 2019,17:1069-1079.
Nong B X, Qin B X, Xia X Z, Yang X H, Zhang Z Q, Zeng Y, Liu C, Cai J H, Xie H T, Cui L X, Luo Q C, Deng G F, Liu P Q, Li D T. Genome-wide association study of seedling resistance of southern rice black-streaked dwarf virus. Mol Plant Breed, 2019,17:1069-1079 (in Chinese with English abstract).
[19] Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012,24:4748-4762.
[20] IRRI (International Rice Research Institute). Standard Evaluation System for Rice. Philippines: International Rice Research Institute, Manila, Philippines. 1996. pp 17-18.
[21] Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010,42:355-360.
[22] Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014,52:213-241.
pmid: 24906128
[23] Kourelis J van der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018,30:285-299.
[24] Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2019-2032.
pmid: 11090206
[25] Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams H S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2033-2045.
pmid: 11090207
[26] Zhao H J, Wang X Y, Jia Y L, Minkenberg B, Wheatley M, Fan J B, Jia M H, Famoso A, Edward J D, Wamishe Y, Valent B, Wang G L, Yang Y N. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 2018,9:2039.
[27] 宋微. 松粳9号对稻瘟病抗性及抗病基因定位. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2013.
Song W. Identification and Gene Mapping of Resistance to Magnaporthe Grisea in Songjing No. 9. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2013 (in Chinese with English abstract).
[28] Xiao W M, Yang Q Y, Sun D Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification of three major R genes responsible for broad-spectrum blast resistance in an indica rice accession. Mol Breed, 2015,35:49.
[29] Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K S, Xiao J H, Yu Z H, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994,138:1251-1274.
[30] Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae the indica rice cultivar Zhe 733. Mol Breed, 2009,24:127-134.
[31] Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003,106:794-803.
[32] Zheng K L, Zhuang J Y, Lu J, Qian H R, Lin H X. Identification of DNA markers tightly linked to blast resistance genes in rice. In: Khush G S, Hettel G, Rola T, eds. Rice Genetics III (in Part 2), IRRI, Manila, Philippines, 2008. pp 565-569.
[33] Naqvi N I, Chattoo B B. Molecular genetic analysis and sequence characterized amplified region-assisted selection of blast resistance in rice. Rice Genet, 1996,3:570-576.
[34] Koide Y, Telebanco-Yanoria M J, Pena F D, Fukuta Y, Kobayashi N. Characterization of rice blast isolates by the differential system and their application for mapping a resistance gene,Pi19(t). J Phytopathol, 2011,159:85-93.
[35] Li W, Lei C L, Cheng Z J, Jia Y L, Huang D L, Wang J L, Wang J K, Zhang X, Su N, Guo X P, Zhai H Q, Wan J M. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breed, 2008,22:141-149.
[36] Kumar P, Pathania S, Katoch P, Sharma T R, Plaha P, Rathour R. Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Mol Breed, 2010,25:217-228.
[37] Yu Z H, Mackill D J, Bonman J M, McCouch S R, Guiderdon i E, Notteghem J L, Tanksley S D. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor Appl Genet, 1996,93:859-863.
[38] Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006,113:251-260.
pmid: 16791691
[39] Joshi S, Dhatwalia S, Kaachra A, Sharma K D, Rathour R. Genetic and physical mapping of a new rice blast resistance specificity Pi-67 from a broad spectrum resistant genotype Tetep. Euphytica, 2019,215:9.
[40] Liu X Q, Yang Q Z, Lin F, Hua L X, Wang C T, Wang L, Pan Q H. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genom, 2007,278:403-410.
[41] Koide Y, Telebanco-Yanoria M J, Fukuta Y, Kobayashi N. Detection of novel blast resistance genes,Pi58(t) and Pi59(t), in a Myanmar rice landrace based on a standard differential system. Mol Breed, 2013,32:241-252.
[42] Dong L Y, Liu S F, Xu P, Deng W, Li X D, Tharreau D, Li J, Zhou J W, Wang Q, Tao D Y, Yang Q Z. Fine mapping of Pi57(t) conferring broad spectrum resistance against Magnaporthe oryzae in introgressionline IL-E1454 derived from Oryza longistaminata. PLoS One, 2017,12:e0186201.
pmid: 29016662
[43] Liang Z J, Wang L, Pan Q H. A new recessive gene conferring resistance against rice blast. Rice, 2016,9:47.
[44] Devi S J S R, Singh K, Umakanth B, Vishalakshi B, Rao K V S, Suneel B, Sharma S K, Kadambari G K M, Prasad M S, Senguttvel P, Syamaladevi D P, Madhav M S. Identification and characterization of a large effect QTL from Oryza glumaepatula revealed Pi68(t) as putative candidate gene for rice blast resistance. Rice, 2020,13:17.
[45] Naqvi N I, Bonman J M, Mackill D J, Nelson R J, Chattoo B B. Identifcation of RAPD markers linked to a major blast resistance gene in rice. Mol Breed, 1995,1:341-348.
[46] Ahn S N, Kim Y K, Hong H C, Han S S, Choi H C, McCouch S R, Moon H P. Mapping of genes conferring resistance to Korean isolates of rice blast fungus using DNA markers. Korean J Breed. 1997,29:416-423.
[47] 鲁清. 水稻种质资源重要农艺性状的全基因组关联分析. 中国农业科学院博士学位论文,北京, 2016.
Lu Q. Genome-wide Association Studies of Important Agronomic Traits in Rice Germplasm. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2016 (in Chinese with English abstract).
[48] Bagnaresi P, Biselli C, Orrù L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Vale G. Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One, 2012,7:e51609.
[49] Meng Q F, Gupta R, Kwon S J, Wang Y M. Agrawal G K, Rakwal R, Park S R, Kim S T. Transcriptomic analysis of Oryza sativa leaves reveals key changes in response to Magnaporthe oryzae MSP1. Plant Pathol J, 2018,34:257.
[50] Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J, Zhou X G, Zhu X B, Chen Z X, Wang J C, Zhao W, Ma B T, Qin P, Chen W L, Wang Y P, Liu J L, Wang W M, Wu X J, Li P, Wang J R, Zhu L H, Li S G, Chen X W. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126.
pmid: 28666113
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[12] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[13] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[14] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[15] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!