欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1491-1510.doi: 10.3724/SP.J.1006.2021.04175

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因

王艳花1,2(), 刘景森1,2, 李加纳1,2,*()   

  1. 1西南大学农学与生物科技学院/油菜工程研究中心, 重庆 400715
    2西南大学现代农业科学研究院, 重庆 400715
  • 收稿日期:2020-07-30 接受日期:2020-12-01 出版日期:2021-08-12 网络出版日期:2021-01-11
  • 通讯作者: 李加纳
  • 作者简介:E-mail: hawer313@163.com
  • 基金资助:
    中国博士后科学基金面上项目(2019M653319);重庆市自然科学基金博士后科学基金项目(cstc2019jcyj-bshXO116);高等学校学科创新引智基地项目(“111”项目)(B12006)

Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L.

WANG Yan-Hua1,2(), LIU Jing-Sen1,2, LI Jia-Na1,2,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2020-07-30 Accepted:2020-12-01 Published:2021-08-12 Published online:2021-01-11
  • Contact: LI Jia-Na
  • Supported by:
    Project of China Postdoctoral Science Foundation(2019M653319);Project of Chongqing Natural Science Foundation Postdoctoral Science Foundation(cstc2019jcyj-bshXO116);Project of Intellectual Base for Discipline Innovation in Colleges and Universities (“111” Project)(B12006)

摘要:

生物产量是作物获得高产的重要基础, 对于甘蓝型油菜(Brassica napus L.)尤其重要。本研究利用588份甘蓝型油菜材料构成的自然群体2年生物产量表型数据的全基因组关联分析, 再结合高生物产量材料‘CQ45’和低生物产量材料‘CQ46’的转录组测序(RNA-seq)结果, 整合了6个甘蓝型油菜材料6个部位(茎秆、叶片、花后30 d主轴与侧枝种子、花后30 d主轴与侧枝角果皮)的转录组数据构建的加权共表达网络分析(WGCNA), 筛选出与生物产量相关的候选基因。通过相关分析发现, 2年间甘蓝型油菜自然群体中生物产量对大多数产量相关性状都具有正向效应; 自然群体2年生物产量分析的最佳模型均为K+PCA模型, 共检测到9个显著位点(P < 1/385691或P < 0.05/385691); 根据CQ45和CQ46共36组转录组数据, 选择MAD值为前5%的基因共计5052个用于构建WGCNA, 通过筛选合并共得到了15个模块, 其中5个基因共表达模块分别与叶片、茎秆和花后30 d种子显著性相关; 整合了WGCNA中关键模块的hub gene、GWAS分析得到的显著SNP位点和极端表型差异基因确定候选基因, 它们的拟南芥同源基因为HCEF1HOG1SBPASEACT2, 这些基因在光合作用的卡尔文循环、碳同化、物质积累等方面发挥重要作用。

关键词: GWAS, WGCNA, RNA Seq, 甘蓝型油菜

Abstract:

Biomass yield is especially important for Brassica napus, as it is the basis for high yields of crops. In this study, the phenotypic data of the natural populations composed of 588 materials were used for genome-wide association analysis (GWAS). We performed the transcriptome sequencing (RNA-seq) of biomass yield using ‘CQ45’ (high biological yield material) and ‘CQ46’ (low biological yield material). A weighted gene co-expression network analysis (WGCNA) network was constructed by integrating transcriptome data of six tissues of the extreme materials, such as stalks, leaves, 30 day after flowering (DAF) seeds of main inflorescence and lateral branch, 30 DAF pod keratin of main branch and lateral branch. We finally screened the candidate genes related to biomass yield. The main results are as follows: Biomass yields in B. napus had positive effects on most yield-related traits; K + PCA model was the best model for biomass analysis of the natural population, and nine significant loci were detected in the best model (P < 1/385691 or P < 0.05/385691); according to 36 groups of transcriptome data, MAD value of each gene was calculated. A total of 5052 genes with MAD value of the top 5% were selected to construct WGCNA. Fifteen gene modules were obtained, among which, five genes co-expression modules were significantly correlated with leaves, stems, and seeds of 30 DAF. The hub genes of the key modules in WGCNA, the significant SNP loci obtained from GWAS, and the extreme phenotypic differential genes were integrated to identify the candidate genes. Their Arabidopsis homologous genes were HCEF1, HOG1, SBPASE, and ACT2, which played the important roles in the Calvin cycle, carbon assimilation, and material accumulation of photosynthesis.

Key words: GWAS, WGCNA, RNA seq, Brassica napus

表1

自然群体2年各产量相关性状间的相关分析"

性状
Trait
环境Environment 粒果比SWSI 千粒重TSW 每角粒数SNPS 茎秆干重ST 上部生物产量CBY 籽粒产量SY 收获指数HI 生物产量BY
SWSI
SWSI
2017CQ 1
2019CQ 1
TSW 2017CQ 0.506** 1
TSW 2019CQ -0.008 1
SNPS 2017CQ 0.513** 0.156** 1
SNPS 2019CQ 0.284 0.056** 1
ST 2017CQ -0.023 0.108* 0.104* 1
ST 2019CQ -0.055** 0.213** 0.198** 1
CBY 2017CQ 0.0247 0.106* 0.072 0.682** 1
CBY 2019CQ -0.037 0.249** 0.171** 0.567** 1
SY 2017CQ 0.204** 0.155** 0.210** 0.524** 0.773** 1
SY 2019CQ 0.179 0.327** 0.409** 0.424** 0.726** 1
HI 2017CQ 0.308** 0.127** 0.232** -0.099* 0.142** 0.687** 1
HI 2019CQ 0.033** 0.292** 0.262** 0.556** 0.972** 0.866** 1
BY 2017CQ 0.007 0.117* 0.089 0.861** 0.957** 0.738** 0.056 1
BY 2019CQ -0.042 0.313** 0.265** 0.752** 0.905** 0.718** 0.901 1

图1

生物产量在各模型下的QQ图"

图2

生物产量的曼哈顿点图"

表2

最佳模型下生物产量显著位点表"

染色体
Chr.
物理位置
Position
位点
SNP
P
P-value
贡献率
R2 (%)
置信区间
Confidence interval
(250 kb up/downstream)
A3 7901059 S3_7901059 9.91E-07 7.25 7651059-8151059
A7 15487057 S7_15487057 1.06E-06 7.70 15237057-15737057
A7 16899362 S7_16899362 1.46E-06 7.43 16649362-17149362
A7 19665408 S7_19665408 1.73E-06 5.99 19415408-19915408
C1 3258674 S11_3258674 1.46E-06 7.65 3008674-3508674
C3 20691876 S13_20691876 1.87E-06 5.64 20441876-20941876
C4 34485253 S14_34485253 1.39E-06 7.51 34174883-34735253
C6 26169577 S16_26169577 2.87E-07 7.98 25919577-26419577
C9 23643765 S19_23643765 1.14E-06 7.61 23393765-23893765

图3

高生物产量材料CQ45和低生物产量材料CQ46转录组分析 A: 极端表型材料各组织差异基因数量; B: 极端表型材料各组织差异基因的GO富集分析; C: 极端表型材料各组织差异基因的KEGG分析。"

图4

样本聚类与基因模块的生成 A: 样本聚类与数据矫正; B和C: 基于规模独立性和均值连通性选择软阈值; D: 已识别模块的树状聚类图; E: 已识别模块的热图。"

图5

基因共表达网络模块与各组织的相关性分析 A: 基因共表达网络模块与组织部位关联热图; B: 各样本中Turquoise模块的所有基因与相应ME的表达水平; C: 不同模块两两之间ME的相关性; D: ME聚类树。"

附图1

各样本中关键模块的所有基因与相应ME的表达水平"

图6

关键模块的基因共表达网络以及核心基因"

表3

生物产量候选基因"

基因
Genes
染色体
Chromosome
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
BnaA04g04350D A04 3211999-3214328 AT3G54050 高循环电子流
High cyclic electron flow 1 (HCEF1)
BnaA04g06420D A04 5053017-5055052 AT4G13940 同源依赖性的基因沉默
HOMOLOGY-DEPENDENT GENE SILENCING 1 (HOG1)
BnaA07g19320D A07 15496197-15496586 AT3G62410 CP12含域蛋白2
CP12 domain-containing protein 2 (CP12-2)
BnaA09g35380D A09 25808955-25811193 AT3G55800 景天庚酮糖二磷酸酶
Sedoheptulose-bisphosphatase (SBPASE)
BnaC03g33610D C03 20464104-20466211 AT3G04120 甘油醛-3-磷酸脱氢酶C亚基1
Glyceraldehyde-3-phosphate dehydrogenase C subunit 1 (GAPC1)
BnaC03g73810D C03 1811021-1813439 AT3G18780 肌动蛋白2
Actin 2 (ACT2)
BnaC08g48810D C08 3782204-3784813 AT3G54050 高循环电子流
High cyclic electron flow 1 (HCEF1)
[1] 金森森, 罗帅. 全球视角下的南美大豆贸易发展趋势. 中国粮食经济, 2014, (4):30-32.
Jin S S, Luo S. The development trend of South American soybean trade from a global perspective. China Food Econ, 2014, (4):30-32 (in Chinese with English abstract).
[2] 陶伯玉. 甘蓝型油菜主要农艺、品质性状的遗传分析和QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2015.
Tao B Y. Genetic Analysis and QTL Mapping of Main Agronomic and Quality Traits in Brassica napus. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[3] 张卫. 明确大宗油料作物发展规划提升国内大宗油料作物自给力. 中国食品, 2016, (19):82-89.
Zhang W. Clarify the development plan of bulk oil crops to enhance the self-sufficiency of domestic bulk oil crops. China Food, 2016, (19):82-89 (in Chinese with English abstract).
[4] 徐露萍. 浅谈油菜种植技术的应用与推广. 南方农业, 2015,9(3):17-18.
Xu L P. Talking about the application and extension of rape planting technology. Southern Agric, 2015,9(3):17-18 (in Chinese with English abstract).
[5] 李培武, 丁小霞, 张文, 谢立华, 周海燕. 中加双低油菜质量标准体系比较及我国发展对策探讨. 农产品质量与安全, 2006, (6):23-26.
Li P W, Ding X X, Zhang W, Xie L H, Zhou H Y. Comparison of quality standard systems for double-low rapeseed between China and Canada and discussion on my country’s development countermeasures. Agric Prod Quality Safety, 2006, (6):23-26 (in Chinese with English abstract).
[6] Mirza H, Karim F M. Rapeseed (Brassica campestris) cultivation in dry season. Vdm Verlag Dr Müller, 2010,12:27-80.
[7] 傅廷栋. 油菜的品种改良. 作物研究, 2007,21(3):159-162.
Fu T D. Rapeseed variety improvement. Crop Res, 2007,21(3):159-162 (in Chinese with English abstract).
[8] Liersch A, Bocianowski J, Henryk W, Laurencja S. Assessment of genetic relationships in breeding lines and cultivars of Brassica napus and their implications for breeding winter oilseed rape. Crop Sci, 2016,56:15-40.
[9] Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003,106:759-764.
doi: 10.1007/s00122-002-1171-2
[10] Wen Y C, Fu T D, Tu J X, MA C Z, Shen J X, Wen J, Zhang S F. Factors analysis of silique shatter resistance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2010,32:25-29.
[11] Chen S, Qian T. Analysis on technical efficiency and influencing factors of rapeseed production. Asian Agric Res, 2016,8:1-7.
[12] Jiang H D, Zhou Q, Li N, Sun X F. Effect of Cd on the growth and physiological characteristics of rape seedlings. Chin J Oil Crop Sci, 2006,28:39-43.
[13] 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018,40:618-623.
Zhang Z, Yin Y, Liu F, Wang J J, Fu T D. The current status and development countermeasures of multifunctional development and utilization of rapeseed in my country. Chin J Oil Crop Sci, 2018,40:618-623 (in Chinese with English abstract).
[14] Chen H, He H, Zou Y J, Chen W, Yu R B, Liu X, Yang Y, Gao Y M, Xu J L, Fan L M, Li Y, Li Z K, Deng X W. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet, 2011,123:869-879.
doi: 10.1007/s00122-011-1633-5
[15] Ma T Q, Lin L B. Application of molecular marker technologies in rape breeding. Mol Plant Breed, 2004,2:728-732.
[16] Xiong Q F, Wen J, Li X H, Shen J X. Technological innovation and industrial development of rapeseed in China. J Agric Sci Technol, 2014,16:14-22.
[17] Beecher H G, Dunn B W, Thompson J A, Humphreys E, Mathews S K, Timsina J. Effect of raised beds, irrigation and nitrogen management on growth, water use and yield of rice in south- eastern Australia. Aust J Exp Agric, 2006,46:1363-1372.
doi: 10.1071/EA04136
[18] Xu Z, Yu Z, Zhao J. Theory and application for the promotion of wheat production in China: past, present and future. J Sci Food Agric, 2013,93:2339-2350.
doi: 10.1002/jsfa.2013.93.issue-10
[19] Cheng L, Li H P, Qu B, Huang T, Tu J X, Fu T D, Liao Y C. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010,29:371-381.
doi: 10.1007/s00299-010-0828-6
[20] Wang G C, Liu Z, Yang G S. Development of high oil content lines of Brassica napus through isolated microspore culture. Chin J Oil Crop Sci, 2007,29:382-386.
[21] Liao X, Wang H Z. Present status of rapeseed science and technology innovation system in China and suggestion for further development. J Agric Sci Technol, 2007,6:28-34.
[22] Cheng L, Li H P, Qu B. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010,29:371-381.
doi: 10.1007/s00299-010-0828-6
[23] Zhang X K, Chen J, Chen L, Wang H Z, Li J N. Imbibition behavior and flooding tolerance of rapeseed seed ( Brassica napus L.) with different testa color. Genet Resour Crop Evol, 2008,55:1175-1184.
doi: 10.1007/s10722-008-9318-x
[24] Palmieri S, Leoni O. Industrial prospectives of rapeseed oil. Physiologic technological and qualitative aspects. Agric Rice, 1992,14:63-70.
[25] Weilenmann M E, Lúquez J, Suárez W. Variability of biological yield, economic yield and harvest index in soybean cultivars grown in irrigated and rainfed environments in Argentina. Tests Agrochem Cult, 2000,21:39-40.
[26] Li S Y, Zhu R K, Varshney J, Zhan X, Zheng J, Shi X, Wang G, Wang H. A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm. Plant Biotechnol J, 2020,18:568-580.
doi: 10.1111/pbi.v18.2
[27] Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379-388.
doi: 10.1186/s12864-015-1607-0
[28] 姚东和, 杨民胜, 李志辉. 林分密度对巨尾桉生物产量及生产力的影响. 中南林业科技大学学报, 2000,20(3):20-23.
Yao D H, Yang M S, Li Z H. The effect of stand density on the biological yield and productivity of Eucalyptus grandis. J Central South Univ For Technol, 2000,20(3):20-23(in Chinese with English abstract).
[29] 李跃建, 宋荷仙, 朱华忠. 小麦收获指数、生物产量和籽粒产量的稳定性分析. 西南农业学报, 1998, (1):25-30.
Li Y J, Song H X, Zhu H Z. Analysis of stability of wheat harvest index, biological yield and grain yield. Southwest Agric J, 1998, (1):25-30 (in Chinese with English abstract).
[30] Dai X L, Zhao J X, Xiang Y, Zhang T, Ren T B, Cheng G P. Correlation analysis of harvest index and plant traits of hybrid Brassica napus. Chin Agric Sci Bull, 2018,2:47-58.
[31] Tian J, Ma K, Saaem I. Advancing high-throughput gene synthesis technology. Mol Biosyst, 2009,5:714-722.
doi: 10.1039/b822268c
[32] Dillies M, Rau A, Aubert J, Hennequet C, Jeanmougin M, Servant A, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë C, Gall L, Schaëffer B, Le C, Guedj M, Jaffrézic F, Consortium. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinf, 2013,14:671-683.
doi: 10.1093/bib/bbs046
[33] Wang J X, Zhang X Q, Shi M L, Gao L J, Niu X F, Te R, Chen L, Zhang W W. Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Funct Integr Genomics, 2014,14:431-440.
doi: 10.1007/s10142-014-0370-7
[34] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020,46:1033-1051.
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020,46:1033-1051 (in Chinese with English abstract).
[35] 宋长新, 雷萍, 王婷. 基于WGCNA算法的基因共表达网络构建理论及其R软件实现. 基因组学与应用生物学, 2013,32:135-141.
Song C X, Lei P, Wang T. Gene co-expression network construction theory based on WGCNA algorithm and its R software implementation. Genomics Appl Biol, 2013,32:135-141 (in Chinese with English abstract).
[36] Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Andrew H P, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154-1165.
doi: 10.1038/s41467-019-09134-9
[37] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
pmid: 17586829
[38] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005,21:263-265.
pmid: 15297300
[39] Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011,696:291-303.
[40] Livingston A K, Cruz J A, Kohzuma K, Dhingra A. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell, 2010,22:221-233.
doi: 10.1105/tpc.109.071084
[41] Mariam S. Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J Exp Bot, 2004,55:2495-2503.
doi: 10.1093/jxb/erh257
[42] Mull L, Ebbs M L, Bender J. A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics, 2005,174:1161-1171.
doi: 10.1534/genetics.106.063974
[43] Ouyang B, Joung J G, Kolenovsky A, Koh C, Nowak J, Caplan A, Keller W A, Cui Y, Cutler A J, Tsang E W. Transcriptome profiling and methyl homeostasis of an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1). Plant Mol Biol, 2012,79:315-331.
doi: 10.1007/s11103-012-9914-1
[44] Godge M R, Kumar D, Kumar P P. Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Rep, 2008,27:1497-1507.
doi: 10.1007/s00299-008-0576-z
[45] Pedro S C F R, Mazhar S, Rosalba M, Mathilde F, Stéphanie B, Rebecca L, Barbara M, Conrad W, Hervé V, Ian F. The Arabidopsis H OMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell, 2005,17:404-417.
pmid: 15659630
[46] López C, Abuzaid O, Lawson T, Raines C A. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the calvin-benson cycle. J Exp Bot, 2017,68:2285-2298.
doi: 10.1093/jxb/erx084
[47] Fermani S, Trivelli X, Sparla F, Thumiger A, Calvaresi M, Marri L, Falini G, Zerbetto F, Trost P. Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly. J Biol Chem, 2012,287:21372-21383.
doi: 10.1074/jbc.M112.350355
[48] Singh P, Kaloudas D, Raines C A. Expression analysis of the Arabidopsis CP12 gene family suggests novel roles for these proteins in roots and floral tissues. J Exp Bot, 2008,59:3975-3985.
doi: 10.1093/jxb/ern236
[49] Marri L, Thieulin P G, Lebrun R, Puppo R, Zaffagnini M, Trost P, Gontero B, Sparla F. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress. Biochimie, 2014,97:228-237.
doi: 10.1016/j.biochi.2013.10.018
[50] Ferro M, Salvi D, Seigneurin B D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le G S, KiefferJ S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Biol Prot, 2010,9:1063-1084.
[51] Henry E, Fung J, Liu G, Drakakak G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet, 2015,11:e1005199.
doi: 10.1371/journal.pgen.1005199
[52] Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol, 2002,129:1464-1472.
doi: 10.1104/pp.005777
[53] Lu K, Liu P, Zhang C, Lu J H, Yang B, Xiao Z C, Liang Y, Xu X F, Qu C M, Zhang K, Liu L Z, Zhu Q L, Fu M L, Yuan X Y, Li J N. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017,8:206-220.
[54] Lu K, Xiao Z C, Jian H J, Liu P, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452
[55] Sun Y Y, Liu T T, Yang H Y, Zuo Q S, Zhou G S, Wu J S. The correlation between the growth characteristics of rapeseed stalk and its yield and the lodging resistance. Hubei Agric Sci, 2014,53:30-35.
[56] 柳寒. 油菜灌浆期种子和角果皮基因表达差异及相关基因的功能分析. 华中农业大学博士学位论文, 湖北武汉, 2015.
Liu H. Gene Expression and Functional Analysis in Seeds and Siliques of Rapeseed during the Filling Stage. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[7] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[11] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[12] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[13] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!