欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1522-1530.doi: 10.3724/SP.J.1006.2021.04194

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作

张海(), 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升*()   

  1. 福建农林大学国家甘蔗工程技术研究中心/农业农村部福建甘蔗生物学与遗传育种重点实验室/教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2020-08-25 接受日期:2020-11-13 出版日期:2021-08-12 网络出版日期:2020-12-22
  • 通讯作者: 徐景升
  • 作者简介:E-mail: zhanghai940410@163.com
  • 基金资助:
    国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2018026);福建省科技厅引导性项目(2017N0003)

Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2

ZHANG Hai(), CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng*()   

  1. National Engineering Research Center for Sugarcane/Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2020-08-25 Accepted:2020-11-13 Published:2021-08-12 Published online:2020-12-22
  • Contact: XU Jing-Sheng
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026);Guiding Project of Science and Technology Department of Fujian Province(2017N0003)

摘要:

光系统II (Photosystem II, PSII)的PsbR亚基对于放氧复合体(oxygen-evolving complex)的组装和稳定具有至关重要的作用。本课题组前期克隆了甘蔗(Saccharum spp. hybrid)的PsbR亚基编码基因, 命名为ScPsbR, 并利用酵母双杂交技术(yeast two hybrid, Y2H)验证了ScPsbR与甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)编码蛋白6K2的互作。本研究通过生物信息学分析表明, ScPsbR具有典型的PsbR亚基结构域, 无信号肽, 具有1个跨膜结构域, 为稳定的疏水性蛋白。系统进化树分析表明, 该蛋白在C3和C4植物中存在明显的分化。亚细胞定位试验表明, ScPsbR定位于叶绿体且与SCMV-6K2共定位。双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验进一步验证了ScPsbR与SCMV-6K2的互作。实时荧光定量PCR检测表明, ScPsbR基因表达具有显著的组织特异性, 在根和茎中表达极少, 未成熟叶片和初衰叶中次之, 成熟叶片中相对表达量最高; SCMV侵染显著影响ScPsbR基因表达, ScPsbR基因在侵染0~12 h显著上调, 侵染1~5 d下调至略低于对照的水平, 但差异不显著, 侵染7~15 d显著下调。

关键词: PsbR亚基, 甘蔗花叶病毒, 6K2, 蛋白互作

Abstract:

The PsbR subunit of photosystem II (PSII) plays a vital role in the assembly and stability of the oxygen-evolving complex. In the previous study, we cloned the coding sequence of the PsbR subunit from sugarcane (Saccharum spp. hybrid) and designated it as ScPsbR. The interaction between ScPsbR and 6K2 protein encoded by Sugarcane mosaic virus (SCMV) was verified by yeast two-hybrid technology. In this study, bioinformatics analysis indicated ScPsbR protein was found to possess a canonical subunit domain of PsbR and a transmembrane domain without signal peptide, and be a stable hydrophobic protein. Phylogenetic tree analysis indicated obvious divergence between C3 and C4 plants for the PsbRs. Subcellular localization experiments suggested that ScPsbR was localized and co-localized with SCMV-6K2 to the chloroplast. The interaction of ScPsbR with the SCMV-6K2 was further verified by bimolecular fluorescence complementation assays. Real-time quantitative PCR results indicated that ScPsbR gene was tissue-specific in sugarcane plants. There was almost no expression of ScPsbR gene in the roots or stems, with increased expression level in the senescing leaves and immature leaves, and the highest expression level in mature leaves. However, the expression level of ScPsbR was significantly changed under the challenged of SCMV. During the infection of SCMV, ScPsbR was significantly up-regulated at 0-12 hour(s) and reduced to a level slightly lower than that of the control at 1-5 days with no significant differences, then significantly down-regulated in 7-15 days.

Key words: PsbR subunit, Sugarcane mosaic virus, 6K2, protein interaction

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScPsbR-F
221-ScPsbR-R
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGCCTCCATGATCTC
GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCGGAGAGGGCGCTGGTGT
双分子荧光互补载体构建
Vector generation for BiFC
ScPsbR-qF
ScPsbR-qR
TCCATGATCTCGTCGTCAGCTCTG
ACGGTCAGGCCACCTCCAATC
定量PCR
Real-time-qPCR
GAPDH-F
GAPDH-R
CACGGCCACTGGAAGCA
TCCTCAG GGTTCCTGATGCC
内参基因
Reference gene
eEF-1α-F
eEF-1α-R
TTTCACACTTGGAGTGAAGCAGAT
GACTTCCTTCACAATCTCATCATAA
内参基因
Reference gene
SCMV-CP-F
SCMV-CP-R
TACAGAGAGACACACAGCTG
ACGCTACACCAGAAGACACT
SCMV检测
Detection of SCMV

图1

ScPsbR基因的核苷酸序列及其编码的氨基酸序列 *: 终止密码子。黑色下画线部分为转运肽。红色下画线部分为跨膜结构域。转运肽和成熟蛋白之间的边界用箭头标出。"

图 2

甘蔗ScPsbR与其他单子叶植物PsbR蛋白的氨基酸序列比对 SbPsbR (XP_002444002.1): 高粱; ZmPsbR (XP_020408082.1): 玉米; PhPsbR (XP_025821160.1): 黍; SiPsbR (XP_004972630.1): 谷子; BdPsbR (XP_010234446.1): 二穗短柄草; OsPsbR (AAB46718.1): 水稻。"

图3

ScPsbR与其他物种PsbR蛋白的系统进化树分析"

图4

ScPsR-YFP在本氏烟表皮细胞中的定位 A: ScPsbR-YFP亚细胞定位; B: ScPsbR-YFP和6K2-CFP亚细胞共定位。白色箭头表示叶绿体, 标尺为25 μm。"

图5

BiFC检测ScPsbR与SCMV-6K2的互作 A: YC融合于ScPsbR的C末端, YN融合于SCMV-6K2的N末端; B:YN融合于ScPsbR的N末端, YC融合于SCMV-6K2的C末端。将YN-6K2和ScPsbR-YC(A), YN-ScPsbR和6K2-YC(B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。白色箭头表示具有互作荧光信号的叶绿体。标尺为25 μm。"

图6

ScPsbR基因在甘蔗不同组织中的表达模式 误差线为每组处理的标准误差(n = 3)。LR: 心叶; +1 L: 正一叶; +7 L: 正七叶; +3 I: 第三节间; +8 I: 第八节间; R: 根。柱上不同小写字母表示在5%水平差异显著。"

图7

ScPsbR基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同小写字母表示在5%水平差异显著。"

[1] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that the Sugarcane mosaic virus subgroup consists of four distinct potyviruses by using peptide profiles of coat proteins. Arch Virol, 1992,5:363-373.
[2] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1):11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Cane Sugar, 2005, (1):11-16 (in Chinese with English abstract).
[3] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot, 2012,42:74-78.
doi: 10.1016/j.cropro.2012.07.005
[4] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[5] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104.
[6] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[7] Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynthesis Res, 2020. doi: 10.1007/s11120-019-00706-w.
[8] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015,46:609-613.
Zhou F J, Huang C H, Li Z W, Shang X K, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015,46:609-613 (in Chinese with English abstract).
[9] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane-Sorghum mosaic virus interaction. Trop Plant Biol, 2018,11:163-176.
doi: 10.1007/s12042-018-9210-6
[10] Urcuqui-Inchima S, Haenni A L, Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74, 157-175.
pmid: 11226583
[11] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017,7:9868.
doi: 10.1038/s41598-017-10497-6
[12] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[13] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
doi: 10.1093/nar/gkw441
[14] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008,105:5897-5902.
doi: 10.1073/pnas.0800468105
[15] Nicolas O, Laliberté J. The complete nucleotide sequence of turnip mosaic potyvirus RNA. J Gen Virol, 1992,73:2785-2793.
doi: 10.1099/0022-1317-73-11-2785
[16] Beauchemin C, Laliberté J F. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. J Virol, 2007,81:10905-10913.
pmid: 17670821
[17] Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T Y, Wang A M, Laliberté J F. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol, 2009,83:10460-10471.
doi: 10.1128/JVI.00819-09
[18] Wei T Y, Wang A M. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol, 2008,82:12252-12264.
doi: 10.1128/JVI.01329-08
[19] Wei T Y, Huang T S, McNeil J, Laliberté J F, Hong J, Nelson R S, Wang A M. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant Potyvirus replication. J Virol, 2010,84:799-809.
doi: 10.1128/JVI.01824-09
[20] Jiang J, Patarroyo C, Cabanillas G D, Zheng H Q, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer sec24a for viral systemic infection. J Virol, 2015,89:6695-6710.
doi: 10.1128/JVI.00503-15
[21] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
doi: 10.1104/pp.17.01484
[22] Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H Q, Laliberté J F. Impact on the endoplasmic reticulum and Golgi apparatus of Turnip mosaic virus infection. J Virol, 2012,86:9255-9265.
doi: 10.1128/JVI.01146-12
[23] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H Q, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013,4:351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[24] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
doi: 10.1104/pp.18.01342
[25] Li F, Zhang C, Tang Z, Zhang L, Dai Z, Lyu S, Li Y, Hou X, Bernards M, Wang A. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020. doi: 10.1111/nph.16716.
[26] Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol, 2018,176:649-662.
doi: 10.1104/pp.17.01198
[27] 王镜岩. 生物化学(第3版). 北京: 高等教育出版社, 2002. pp 197-229.
Wang J Y. Biochemistry, 3rd edn. Beijing: Higher Education Press, 2002. pp 197-229(in Chinese).
[28] Marjaana S, Sari S, Yagut A, Virpi P, Fikret M, Stenbjörn S, Eva-Mari A. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem, 2006,281:145-150.
pmid: 16282331
[29] Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K. Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem, 2014,289:20150-20157.
doi: 10.1074/jbc.M114.574822
[30] Allahverdiyeva Y, Mamedov F, Suorsa M, Styring S, Eva-Mari Aro I M. Insights into the function of PsbR protein in Arabidopsis thaliana. Biochim Biophys Acta, 2007,1767:677-685.
pmid: 17320041
[31] Allahverdiyeva Y, Suorsa M, Rossi F, Pavesi A, Kater M M, Antonacci A, Tadini L, Pribil M, Schneider A, Wanner G, Leister D, Aro E M, Barbato R, Pesaresi P. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J, 2013,75:671-684.
doi: 10.1111/tpj.2013.75.issue-4
[32] Liu H, Frankel L K, Bricker T M. Characterization and complementation of a psbR mutant in Arabidopsis thaliana. Arch Biochem Biophys, 2009,489:34-40.
doi: 10.1016/j.abb.2009.07.014
[33] 郭宇, 刘瑜, 戚娟娟, 李慧, 赫兰兰, 卢丽男, 刘翠, 宫利东, 赵东霞, 杨忠志. S4-S0转化期水结合至放氧复合体可能机制的理论研究. 化学学报, 2017,75:914-921.
doi: 10.6023/A17050214
Guo Y, Liu Y, Qi J J, Li H, He L L, Lu L N, Liu C, Gong L D, Zhao D X, Yang Z Z. Possible mechanisms of water binding to the oxygen-evolving complex during the S4-S0 transition: a theoretical investigation. Acta Chim Sin, 2017,75:914-921 (in Chinese with English abstract).
[34] 许耀照, 曾秀存, 孙万仓, 武军艳, 方彦, 刘自刚, 马骊. 白菜型冬油菜PsbR基因的克隆及低温下表达分析. 农业生物技术学报, 2017,25:1423-1433.
Xu Y Z, Zeng X C, Sun W C, Wu J Y, Fang Y, Liu Z G, Ma L. Cloning of PsbR gene in winter turnip rape (Brassica campestris) and its expression analysis under low temperature stress J Agric Biotechnol, 2017,25:1423-1433 (in Chinese with English abstract).
[35] Sasi S, Venkatesh J, Daneshi R, Gururani M A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants, 2018,7:100.
doi: 10.3390/plants7040100
[36] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
doi: 10.3390/ijms20163867
[37] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020,46:1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020,46:1722-1733 (in Chinese with English abstract).
[38] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
doi: 10.1038/srep07042
[39] Ljungberg U, Akerlund H, Andersson B. Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2. Eur J Biochem, 1986,158:477-482.
pmid: 3525160
[40] Lautner A, Klein R, Ljungberg U, Reiländer H, Bartling D, Bartling A, Reinke H, Beyreuther K, Herrmann R G. Nucleotide sequence of cDNA clones encoding the complete precursor for the “10-kDa” polypeptide of photosystem II from spinach. J Biol Chem, 1988,263:10077-10081.
pmid: 2839473
[41] Webber A, Packman L, Gray J. A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain. Febs Lett, 1989,242:435-438.
pmid: 2644135
[42] Zhao J, Zhang X, Hong Y, Liu Y L. Chloroplast in plant-virus interaction. Front Microbiol, 2016,7:1565.
[43] Bhattacharyya D, Chakraborty S. Chloroplast: the trojan horse in plant-virus interaction. Mol Plant Pathol, 2018,19:504-518.
doi: 10.1111/mpp.2018.19.issue-2
[44] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作研究. 作物学报, 2019,45:1478-1487.
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Xu Q, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
[45] Balasubramaniam M, Kim B S, Hutchens-Williams H M, Loesch-Fries L S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. Mol Plant Microbe Interact, 2014,27:1107-1118.
doi: 10.1094/MPMI-02-14-0035-R
[46] Kong L F, Wu J X, Lu L N, Xu Y, Zhou X P. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant, 2014,7:691-708.
doi: 10.1093/mp/sst158
[47] Abbink T E, Peart J R, Mos T N, Baulcombe D C, Bol J F, Linthorst H J. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology, 2002,295:307-319.
doi: 10.1006/viro.2002.1332
[48] Farooq T, Liu D, Zhou X, Yang Q Y. Tomato yellow leaf curl China virus impairs photosynthesis in the infected Nicotiana benthamiana with βC1 as an aggravating factor. Plant Pathol J, 2019,35:521-529.
doi: 10.5423/PPJ.OA.04.2019.0120
[49] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104.
[50] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018,50:1565-1573.
doi: 10.1038/s41588-018-0237-2
[51] 崔晓艳, 魏太云, 陈新. 马铃薯Y病毒属病毒的细胞生物学研究进展. 中国农业科学, 2012,45:1293-1302.
Cui X Y, Wei T Y, Chen X. Advances in research on cell Biology of Potyvirus. Sci Agric Sin, 2012,45:1293-1302 (in Chinese with English abstract).
[52] Wei T Y, Zhang C, Hou X, Sanfaçon H, Wang A M. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
doi: 10.1371/journal.ppat.1003378
[53] Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol Plant Pathol, 2019,20:943-960.
doi: 10.1111/mpp.12804
[54] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
[55] Ng J C, Perry K L. Transmission of plant viruses by aphid vectors. Mol Plant Pathol, 2004,5:505-511.
doi: 10.1111/mpp.2004.5.issue-5
[56] Nault L R. Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am, 1997,90:521-541.
doi: 10.1093/aesa/90.5.521
[1] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[2] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[3] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[4] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[5] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[6] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733.
[7] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[8] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[9] 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961.
[10] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
[11] 汤青林,许俊强,宋明,王志敏. 芥菜AP1基因体外表达及其与FLC相互作用的验证[J]. 作物学报, 2012, 38(07): 1328-1333.
[12] 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810.
[13] 宋健民,戴双,李豪圣,刘爱峰,程敦公,楚秀生,Ian J Tetlow,Michael J Emes. 小麦胚乳14-3-3蛋白的表达及其淀粉体淀粉合成酶的互作[J]. 作物学报, 2009, 35(8): 1445-1450.
[14] 席章营;张书红;李新海;谢传晓;李明顺;郝转芳;张德贵;梁业红;白丽;张世煌. 一个新的抗玉米矮花叶病基因的发现及初步定位[J]. 作物学报, 2008, 34(09): 1494-1499.
[15] 陈旭;李新海;郝转芳;王振华;田清震;李明顺;白丽;张世煌. 玉米抗矮花叶病QTL定位[J]. 作物学报, 2005, 31(08): 983-988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!