作物学报 ›› 2021, Vol. 47 ›› Issue (10): 2036-2044.doi: 10.3724/SP.J.1006.2021.02082
刘畅1(), 孟云1, 刘金栋1, 王雅美1,*(), Guoyou Ye1,2
LIU Chang1(), MENG Yun1, LIU Jin-Dong1, WANG Ya-Mei1,*(), Guoyou Ye1,2
摘要:
中胚轴长度(mesocotyl length, ML)是影响旱直播水稻出苗和早期幼苗活力的重要性状。发掘中胚轴伸长相关位点, 解析其遗传机制, 选育长中胚轴品种是促进旱直播技术推广最为经济和有效的方式。本研究以长中胚轴品种‘Changai’和短中胚轴品种‘IR 145’为亲本构建的F2遗传分离群体为材料, 构建长池和短池并开展深度重测序(50×)。利用Δ(SNP-index)和G-value两种方法在3号染色体29.56~33.28 Mb处鉴定到1个中胚轴伸长相关位点qML3。在候选区域开发KASP标记, 对184个F2株系开展连锁分析, 将候选区间缩小到28.89~31.03 Mb。结合基因注释、连锁分析和基因表达分析结果, 推测LOC_Os03g52450、LOC_Os03g56060、LOC_Os03g58290、LOC_Os03g58300、LOC_Os03g58320、LOC_Os03g56050和LOC_Os03g57640为候选基因。这些基因分别与植物激素的调控和细胞分裂相关机制有关。本研究发掘了一个水稻中胚轴伸长相关位点, 对选育长中胚轴品种有一定帮助。
[1] |
Zhao G, Fu J, Wang G, Ma P, Wu L, Wang J. Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-3684. Plant Breed, 2010, 129:87-91.
doi: 10.1111/pbr.2010.129.issue-1 |
[2] |
Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev, 2015, 35:285-294.
doi: 10.1007/s13593-014-0239-0 |
[3] |
Chen Z, Tang Y T, Zhou C, Xie S T, Xiao S, Baker A J M, Qiu R L. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere, 2017, 175:275-285.
doi: S0045-6535(17)30231-X pmid: 28232138 |
[4] | Matloob A, Khaliq A, Chauhan B S. Weeds of direct-seeded rice in Asia: problems and opportunities. Adv Agron, 2015, 130:291-336. |
[5] |
Turner F T, Chen C C, Bollich C N. Coleoptile and mesocotyl lengths in semidwarf rice seedlings. Crop Sci, 1982, 22:43-46.
doi: 10.2135/cropsci1982.0011183X002200010010x |
[6] |
Chung N J. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields. Crop Pasture Sci, 2010, 61:911-917.
doi: 10.1071/CP10099 |
[7] |
Zhang H, Ma P, Zhao Z, Zhao G, Tian B, Wang J, Wang G. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet, 2012, 124:223-232.
doi: 10.1007/s00122-011-1700-y |
[8] |
Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C, Yin C C, Zhao H, Zhou Y, Zhang W K, Wang W S, Li Z K, Chen S Y, Zhang J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell, 2017, 29:1053-1072.
doi: 10.1105/tpc.16.00981 |
[9] | 曹立勇, 朱军, 颜启传, 何立斌, 魏兴华, 程式华. 水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析. 中国水稻科学, 2002, 16(3):24-27. |
Cao L Y, Zhu J, Yan Q C, He L B, Wei X H, Cheng S H. Mapping QTLs with Epistasis for mesocotyl length in a DH population from indica-japonica cross of rice(Oryza sativa). Chin J Rice Sci, 2002, 16(3):24-27 (in Chinese with English abstract). | |
[10] |
Liu H, Zhan J, Li J, Lu X, Liu J, Wang Y, Zhao Q, Ye G. Genome-wide association study (GWAS) for mesocotyl elongation in rice (Oryza sativa L.) under multiple culture conditions. Genes, 2019, 11:49-64.
doi: 10.3390/genes11010049 |
[11] |
Zhan J, Lu X, Liu H, Zhao Q, Ye G. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis. Planta, 2020, 251:1-14.
doi: 10.1007/s00425-019-03297-x |
[12] |
Zhao Y, Zhao W, Jiang C, Wang X, Xiong H, Todorovska E G, Yin Z, Chen Y, Wang X, Xie J, Pan Y, Rashid M A R, Zhang H, Li J, Li Z. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Front Plant Sci, 2018, 9:332-345.
doi: 10.3389/fpls.2018.00332 pmid: 29616055 |
[13] |
Sun S, Wang T, Wang L, Li X, Jia Y, Liu C, Huang X, Xie W, Wang X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat Commun, 2018, 9:2523-2535.
doi: 10.1038/s41467-018-04952-9 |
[14] |
Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, Xiong G. Karrikin signaling acts parallel to and additively with Strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell, 2020, 32:2780-2805.
doi: 10.1105/tpc.20.00123 |
[15] |
Lee H S, Sasaki K, Kang J, Sato T, Song W, Ahn S. Mesocotyl elongation is essential for seedling emergence under deep- seeding condition in rice. Rice, 2017, 10:32-42.
doi: 10.1186/s12284-017-0173-2 |
[16] |
Das S, Upadhyaya H D, Baiai D, Kujur A, Badoni S, Narnoliya L, Kumar V, Tripathi S, Gowda C L, Sharma S, Sube S, Tyagi A K, Parida S. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res, 2015, 22:193-203.
doi: 10.1093/dnares/dsv004 |
[17] |
Lee H S, Sasaki K, Higashitani A, Ahn S N, Sato T. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.). Rice, 2012, 5:13-22.
doi: 10.1186/1939-8433-5-13 |
[18] |
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14:1941-1955.
doi: 10.1111/pbi.2016.14.issue-10 |
[19] |
Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, Zou D. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice, 2018, 11:1-12.
doi: 10.1186/s12284-017-0196-8 |
[20] | Farooqi M Q U, Ma S, Lee J K. Bulk segregant analysis for the improvement of drought resistance in maize (Zea mays L.) inbred lines as revealed by SSR molecular markers. Res J Biotechnol, 2018, 13:34-51. |
[21] |
Xu X, Li Q, Ma Z, Fan J, Zhou Y. Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breed, 2018, 38:23-34.
doi: 10.1007/s11032-018-0783-4 |
[22] |
Li C, Ling F, Su G, Sun W, Liu H, Su Y, Xin Q. Location and mapping of the NCLB resistance genes in maize by bulked segregant analysis (BSA) using whole genome re-sequencing. Mol Breed, 2020, 40:1-12.
doi: 10.1007/s11032-019-1080-6 |
[23] |
Miao L, Chao H, Chen L, Wang H, Zhao W, Li B, Zhang L, Li H, Wang B, Li M. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theor Appl Genet, 2019, 132:1761-1775.
doi: 10.1007/s00122-019-03313-4 |
[24] |
Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016, 6:38493-38502.
doi: 10.1038/srep38493 pmid: 27922076 |
[25] |
Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet, 2014, 127:1491-1499.
doi: 10.1007/s00122-014-2313-z |
[26] |
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice, 2020, 13:55-68.
doi: 10.1186/s12284-020-00416-1 pmid: 32778977 |
[27] |
Ehrenreich I M, Torabi N, Jia Y, Kent J, Martis S, Shapiro J A, Gresham D, Caudy A A, Kruglyak L. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature, 2020, 464:1039-1042.
doi: 10.1038/nature08923 |
[28] |
Abe A, Shunichi K, Kentaro Y, Satoshi N, Hiroki T, Hiroyuki K, Hideo M, Kakoto Y, Chikako M, Muluneh T, Hideki I, Liliana C, Sophien K, Ryohei T. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30:174-178.
doi: 10.1038/nbt.2095 |
[29] |
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74:174-183.
doi: 10.1111/tpj.2013.74.issue-1 |
[30] | Mansfeld B N, Grumet R. QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome, 2018, 11:1-5. |
[31] |
Kosambi D D. The estimation of map distance from recombination values. Ann Eugen, 1943, 12:172-175.
doi: 10.1111/j.1469-1809.1943.tb02321.x |
[32] |
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[33] |
Watanabe H, Hase S, Saigusa M. Effects of the combined application of ethephon and gibberellin on growth of rice (Oryza sativa L.) seedlings. Plant Prod Sci, 2007, 10:468-472.
doi: 10.1626/pps.10.468 |
[34] |
Gray W M, Ostin A, Sandberg G, Romano C P, Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95:7197-7202.
doi: 10.1073/pnas.95.12.7197 |
[35] |
Romano C P, Robson P R H, Smith H, Estelle M, Klee H. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol, 1995, 27:1071-1083.
pmid: 7766890 |
[36] |
Watanabe H, Takahashi K, Saigusa M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regul, 2001, 34:273-275.
doi: 10.1023/A:1013333718573 |
[37] |
Hu Z, Yamauchi T, Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol, 2014, 55:30-41.
doi: 10.1093/pcp/pct150 |
[38] |
Redona E D, Mackill D J. Mapping quantitative trait loci for seeding vigor in rice using RFLPs. Theor Appl Genet, 1996, 92:395-402.
doi: 10.1007/BF00223685 |
[39] | Katsuta-Seki M, Ebana K, Okuno K. QTL analysis for mesocotyl elongation in rice. Rice Genet Newsl, 1996, 13:126. |
[40] |
Wu J, Feng F, Lian X, Teng X, Wei H, Yu H, Xie W, Yan M, Fan P, Li Y, Ma X, Liu H, Yu S, Wang G, Zhou F, Luo L, Mei H. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol, 2015, 15:218-227.
doi: 10.1186/s12870-015-0608-0 |
[41] |
Zhao G, Wang J. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod Sci, 2008, 11:423-429.
doi: 10.1626/pps.11.423 |
[42] | Masuda Y. Auxin-induced cell elongation and cell wall changes. J Plant Res, 1990, 103:345-370. |
[43] |
Watanabe H, Takahashi K, Saigusa M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regul, 2001, 34:273-275.
doi: 10.1023/A:1013333718573 |
[44] |
Zhang C, Huang Y, Xiao Z, Yang H, Hao Q, Yuan S, Chen H, Chen L, Chen S, Zhou X, Huang W. A GATA transcription factor from soybean (Glycine max) regulates chlorophyll biosynthesis and suppresses growth in the transgenic Arabidopsis thaliana. Plants, 2020, 9:1036-1041.
doi: 10.3390/plants9081036 |
[45] |
Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 2009, 71:291-305.
doi: 10.1007/s11103-009-9524-8 |
[46] | Nutan K K, Singla-Pareek S L, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot, 2019, 71:684-698. |
[47] |
Zhang L, Li Q, Dong H, He Q, Liang L, Tan C, Han Z, Yao W, Li G, Zhao H, Xie W, Xing Y. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep, 2015, 5:7663-7673.
doi: 10.1038/srep07663 pmid: 25563494 |
[48] |
Liu D, Zehfroosh N, Hancock B L, Hines K, Fang W, Kilfoil M, Learned-Miller E, Sanguinet K A, Goldner L S, Baskin T I. Imaging cellulose synthase motility during primary cell wall synthesis in the grass Brachypodium distachyon. Sci Rep, 2017, 7:15111-15122.
doi: 10.1038/s41598-017-14988-4 |
[49] |
Inouhe M, Inada G, Thomas B R, Nevins D J. Cell wall autolytic activities and distribution of cell wall glucanases in Zea mays L. seedlings. Int J Biol Macromol, 2000, 27:151-156.
pmid: 10771065 |
[50] |
Erp H V, Walton J D. Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl. Planta, 2009, 229:885-897.
doi: 10.1007/s00425-008-0881-3 |
[51] |
Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31:1336-1345.
doi: 10.1007/s11105-013-0610-3 |
[52] |
Hwang S G, Kim D S, Hwang J E, Han A R, Jang C S. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541:82-91.
doi: 10.1016/j.gene.2014.02.060 |
[53] |
Li X, Yang D L, Sun L, Li Q, Mao B, He Z. The systemic acquired resistance regulator OsNPR1 attenuates growth by repressing auxin signaling through promoting IAA-amido synthase expression. Plant Physiol, 2016, 172:546-558.
doi: 10.1104/pp.16.00129 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[4] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150. |
[5] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[6] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[7] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[8] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[9] | 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902. |
[10] | 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387. |
[11] | 王瑞莉,王刘艳,叶桑,郜欢欢,雷维,吴家怡,袁芳,孟丽姣,唐章林,李加纳,周清元,崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位[J]. 作物学报, 2020, 46(6): 832-843. |
[12] | 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[13] | 荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因[J]. 作物学报, 2020, 46(10): 1557-1565. |
[14] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[15] | 曲存民,马国强,朱美晨,黄小虎,贾乐东,王书贤,赵会彦,徐新福,卢坤,李加纳,王瑞. 砷胁迫下甘蓝型油菜苗期根、下胚轴和鲜重的全基因组关联分析[J]. 作物学报, 2019, 45(2): 175-187. |
|