作物学报 ›› 2021, Vol. 47 ›› Issue (10): 2045-2052.doi: 10.3724/SP.J.1006.2021.02079
李晓旭(), 王蕊(), 张利霞, 宋亚萌, 田晓楠, 葛荣朝*()
LI Xiao-Xu(), WANG Rui(), ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao*()
摘要:
植物胚胎特异性蛋白ATS3和植物的渗透胁迫响应有密切关系, 本文对水稻OsATS基因的抗逆相关功能进行了初步研究。qRT-PCR检测发现, 水稻在盐胁迫后OsATS基因表达量显著增加。构建OsATS基因过表达载体, 转化拟南芥植株, 抗逆性检测表明, OsATS基因的过表达可以显著提高拟南芥在萌发阶段和成株阶段的耐盐性。随后将过表达载体p1300-35S:OsATS和RNA干涉载体pTCK303-OsATS-RNAi转入水稻, 抗逆性分析表明, OsATS过表达水稻株系在萌发阶段和苗期的耐盐性显著提高, 而OsATS基因RNAi水稻株系耐盐性则明显下降。qRT-PCR和生理指标检测表明, OsATS基因的表达可能通过调节OsP5CS1、OsLEA3-1、OsPDH基因的表达, 调控了水稻细胞中的脯氨酸、LEA蛋白质含量, 进而影响了水稻植株整体的耐盐性。本研究初步揭示了OsATS基因的抗逆功能, 后续可通过调整该基因的表达量, 改良水稻的抗逆性。
[1] | 艾爱华. OsRab7对水稻花粉发育及抗盐性的影响. 南昌大学硕士学位论文, 江西南昌, 2016. |
Ai A H. Effect of OsRab7 on Pollen Development and Salt Resistance in Rice. MS Thesis of Nanchang University, Nanchang, Jiangxi, China, 2016 (in Chinese with English abstract). | |
[2] | 朱德峰, 王亚梁. 全球水稻生产时空变化特征分析. 中国稻米, 2021, 27(1):7-8. |
Zhu D F, Wang Y L. Analysis of characteristics of temporal and spatial variation of rice production in the world. China Rice, 2021, 27(1):7-8. | |
[3] | 李小兵, 黎华寿, 张泽民, 陈桂葵. 水稻盐分胁迫研究进展. 广东农业科学, 2014, 41(12):6-11. |
Li X B, Li H S, Zhang Z M, Chen G K. Research progress on salt-stress in rice. Guangdong Agric Sci, 2014, 41(12):6-11 (in Chinese with English abstract). | |
[4] |
Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: a review. Biochem Biophs Res Commun, 2018, 495:286-291.
doi: 10.1016/j.bbrc.2017.11.043 |
[5] | 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2):154-158. |
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005, 23(2):154-158 (in Chinese with English abstract). | |
[6] | 张建锋, 张旭东, 周金星, 刘国华, 李冬雪. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005, 12(6):32-34. |
Zhang J F, Zhang X D, Zhou J X, Liu G H, Li D X. World resources of saline soil and main amelioration measures. Res Soil Water Conser, 2005, 12(6):32-34 (in Chinese with English abstract). | |
[7] | 高继平, 林鸿宣. 水稻耐盐机理研究的重要进展——耐盐数量性状基因SKC1的研究. 生命科学, 2005, 17:563-565. |
Gao J P, Lin H X. An important advance in the study of salt-tolerance mechanism in rice—the study of salt-tolerance quantitative trait gene SKC1. Chin Bull Life Sci, 2005, 17:563-565 (in Chinese). | |
[8] |
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37:1141-1146.
doi: 10.1038/ng1643 |
[9] | 彭静静, 张静, 王美娜, 安文静, 王凯婕, 刘亚菲, 岳柯, 韦梓丰, 侯兰兰, 罗琴星, 毕一凡, 梁卫红. 过表达水稻OsAQP增强转基因拟南芥耐盐性. 中国生物化学与分子生物学报, 2019, 35:678-686. |
Peng J J, Zhang J, Wang M N, An W J, Wang K J, Liu Y F, Yue K, Wei Z F, Hou L L, Luo Q X, Bi Y F, Liang W H. Overexpression of rice OsAQP enhances salt tolerance in transgenic Arabidopsis. Chin J Biochem Mol Biol, 2019, 35:678-686 (in Chinese with English abstract). | |
[10] |
Liao Y D, Lin K H, Chen C C, Chiang C M. Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breed, 2016, 36:22.
doi: 10.1007/s11032-016-0446-2 |
[11] |
Amin U S M, Biswas S, Elias S M, Razzaque S, Haque T, Malo R, Seraj Z I. Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5°-UTR in transgenic lines of rice. Front Plant Sci, 2016, 7:14.
doi: 10.3389/fpls.2016.00014 pmid: 26834778 |
[12] |
Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol, 2007, 64:49-58.
doi: 10.1007/s11103-007-9133-3 |
[13] |
Li M, Guo L J, Guo C M, Wang L J, Chen L. Over-expression of a DUF1644 protein gene,SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol, 2016, 59:62-73.
doi: 10.1007/s12374-016-0180-7 |
[14] |
Sahoo R K, Ansari M W, Tuteja R, Tuteja N. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice, 2014, 7:17-19.
doi: 10.1186/s12284-014-0017-2 |
[15] |
Nath M, Garg B, Sahoo R K, Tuteja N. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation. Plant Signal Behav, 2015, 10:e992289.
doi: 10.4161/15592324.2014.992289 |
[16] |
Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111:10013-10018.
doi: 10.1073/pnas.1321568111 |
[17] |
Chen X, Wang Y, Lyu B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol, 2014, 55:604-619.
doi: 10.1093/pcp/pct204 pmid: 24399239 |
[18] |
Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev, 2009, 23:1805-1817.
doi: 10.1101/gad.1812409 |
[19] |
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpression a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103:12987-12992.
doi: 10.1073/pnas.0604882103 |
[20] |
Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67:169-181.
doi: 10.1007/s11103-008-9309-5 |
[21] | Battaglia M, Covarrubias A A. Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci, 2013, 25:190. |
[22] |
Magwanga R O, Lu P, Kirungu J N, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F. Characterization of the late embryogenesis abundant (LEA) protein family and their role in drought stress tolerance in upland cotton. BMC Genet, 2018, 19:6.
doi: 10.1186/s12863-017-0596-1 pmid: 29334890 |
[23] |
Huang L P, Zhang M Y, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza sativa L. Plant Cell Physiol, 2018, 59:916-929.
doi: 10.1093/pcp/pcy035 |
[24] |
Wang H, Wu Y, Yang X, Guo X, Cao X. SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma, 2017, 254:685-696.
doi: 10.1007/s00709-016-0981-z |
[25] |
Nuccio M L, Thomas T L. ATS1 and ATS3: two novel embryo-specific genes in Arabidopsis thaliana. Plant Mol Biol, 1999, 39:1153-1163.
pmid: 10380802 |
[26] | Rooijen G J H V, Wilen R W, Holbrook L A, Abrams S R, Moloney M M. Phytohormones and osmotic stress in the regulation of embryo-specific gene expression in Brassica napus microspore embryos. Plant Growth Regul, 1992, 13:354-359. |
[27] |
Shinde S, Villamor J G, Lin W, Sharma S, Verslues P E. Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol, 2016, 172:1074.
pmid: 27512016 |
[28] |
Forlani G, Giberti S, Funck D. D1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulationby proline depend on whether NADPH or NADH acts as cosubstrate. New Phytol, 2014, 202:911-919.
doi: 10.1111/nph.2014.202.issue-3 |
[29] |
Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids, 2010, 39:949-962.
doi: 10.1007/s00726-010-0525-3 pmid: 20204435 |
[30] |
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep, 2013, 32:985-1006.
doi: 10.1007/s00299-013-1414-5 pmid: 23508256 |
[31] | Liang X, Zhang L, Natarajan S K, Becker D F. Proline mechanisms of stress survival. Antioxid Redox Sign, 2013, 19:998-1011. |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|