欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2111-2120.doi: 10.3724/SP.J.1006.2021.04251

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响

王晔1,2**(), 刘钊2,**, 肖爽2, 李芳军2, 吴霞3, 王保民2, 田晓莉2,*()   

  1. 1北京农学院植物科学技术学院, 北京 102206
    2中国农业大学农学院 / 植物生长调节剂教育部工程研究中心, 北京 100193
    3山西农业大学 / 山西农业科学院棉花研究所, 山西运城 044000
  • 收稿日期:2020-11-21 接受日期:2021-04-26 出版日期:2021-11-12 网络出版日期:2021-06-09
  • 通讯作者: 田晓莉
  • 作者简介:王晔, E-mail: wangyebua@126.com第一联系人:**同等贡献
  • 基金资助:
    国家转基因生物新品种培育重大专项(2011ZX08005-004-008);国家自然科学基金项目(31701337)

Effects of PSAG12-IPT gene expression on leaf senescence, yield, and fiber quality in cotton

WANG Ye1,2**(), LIU Zhao2,**, XIAO Shuang2, LI Fang-Jun2, WU Xia3, WANG Bao-Min2, TIAN Xiao-Li2,*()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    2College of Agronomy and Biotechnology, China Agricultural University / China Engineering Research Center of Plant Growth Regulator, Ministry of Education, Beijing 100193, China
    3Shanxi Agricultural University / Cotton Research Institute Shanxi Academy of Agricultural Sciences, Yuncheng 044000, Shanxi, China
  • Received:2020-11-21 Accepted:2021-04-26 Published:2021-11-12 Published online:2021-06-09
  • Contact: TIAN Xiao-Li
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Major Project for Developing New GM Crops(2011ZX08005-004-008);National Natural Science Foundation of China(31701337)

摘要:

探讨PSAG12-IPT基因导入对棉花叶片衰老性状、产量和纤维品质的影响。本研究以9个转化事件的纯合阳性株系为试验材料, 于2011—2012年在中国农业大学上庄实验站开展研究。结果表明, 转基因株系叶片衰老阶段IPT基因表达量大幅上调, Z+ZR类细胞分裂素含量显著高于野生型冀合321。根据Z+ZR类细胞分裂素含量将9个转PSAG12-IPT基因株系聚类分为抗衰老能力强、弱和中间型3大类, 不同类型株系在叶片衰老阶段的叶绿素和可溶性蛋白含量较野生型增加幅度不同。转基因株系单株成铃数(直径≥2 cm)和铃重与野生型相当或高于野生型, 但各株系第一次收获时的吐絮率显著低于野生型, 且降低幅度与抗衰老能力成正比。这导致抗衰老能力较强和中等的PSAG12-IPT过表达株系(OE-37和OE-38)因有效吐絮铃少而减产, 而抗衰老能力弱的株系(OE-30)籽棉产量与野生型相当。PSAG12-IPT基因过表达株系的纤维长度整齐度指数显著高于野生型, 马克隆值有增加趋势, 其他品质指标与野生型差别不大。

关键词: 棉花, PSAG12-IPT基因, 细胞分裂素, 产量, 纤维品质

Abstract:

A chimeric gene of bacterial IPT and the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) was overexpressed in cotton, and nine independent transgenic lines were obtained. To identify the leaf senescence characteristics, yield, and fiber quality of PSAG12-IPT cotton plants, we performed the experiments at the Shangzhuang Experimental Station of China Agricultural University in 2011 and 2012. The results showed that the expression of IPT genes in transgenic lines was dramatically up-regulated at leaf aging stage, and the content of Z+ZR-type cytokinin was significantly higher than that of wild type Jihe 321. According to the content of Z+ZR-type cytokinin, nine transgenic lines were clustered into three categories with strong, weak, and moderate anti-aging ability. During leaf senescence period, the contents of chlorophyll and soluble proteins in transgenic lines were positively related to the content of Z+ZR-type cytokinin. Compared to wild type, transgenic lines had a higher or equal number of bolls (diameter ≥ 2 cm) per plant and boll weigh, but their boll-opening rate at the first harvest was significantly decreased, and the extent of reduction was positively related to the anti-aging ability. Consequently, the seed cotton yield of PSAG12-IPT lines (OE-37 and OE-38) with strong or moderate anti-aging ability decreased due to less opened bolls, while the line (OE-30) with weak anti-aging ability had a comparable yield to that of wild type. The fiber length uniformity of PSAG12-IPT cotton lines was significantly higher than that of wild type. Compared with wild type, the micronaire results of transgenic lines revealed an increasing trend, and fiber length, breaking strength, and breaking elongation was not significantly different from that of wild type.

Key words: cotton, PSAG12-IPT, cytokinin, yield, fiber quality

图1

质粒PSG529结构图"

图2

转PSAG12-IPT基因棉花植株的PCR检测 A: 叶片中IPT基因的PCR结果; B: 叶片中NPT II基因的PCR结果; C: 根系中NPT II基因的PCR结果。"

图3

棉花叶片衰老阶段PSAG12-IPT基因在转基因株系中的表达分析 柱上不同小写字母表示在0.05水平差异显著。"

图4

转PSAG12-IPT基因对棉花叶片衰老阶段细胞分裂素含量的影响 柱上不同小写字母表示在0.05水平差异显著。"

表1

不同转基因棉花株系叶片细胞分裂素的聚类分析"

类群
Cluster
株系代号
Code of line
株系个数
Number of
lines
频率
Frequency
(%)
类平均标准差
Mean of cluster
(nmol g-1)
变幅
Range
(nmol g-1)
I OE-9, OE-30 2 22.22 75.66 c 75.45-75.88
II OE-17, OE-19B, OE-19L, OE-22, OE-27, OE-37 6 66.67 87.43 b 82.23-93.19
III OE-38 1 11.11 113.62 a 113.62

图5

PSAG12-IPT基因在转基因棉株叶片中相对表达量变化动态"

图6

转基因株系和野生型棉株叶片细胞分裂素含量变化动态"

图7

转基因株系和野生型棉株叶片叶绿素含量变化动态"

图8

转基因株系和野生型棉株叶片可溶性蛋白含量变化动态"

表2

PSAG12-IPT基因导入对棉花农艺性状的影响"

株系
Line
2011 2012
株高
Plant height
(cm)
果枝始节
First node
producing fruiting branch
果枝数
Number of fruiting branch
株高
Plant height
(cm)
果枝始节
First node
producing fruiting branch
果枝数
Number of fruiting branch
冀合321 Jihe 321 103.3 a 6.3 b 14.0 a 134.5 a 7.6 b 16.9 a
OE-30 91.7 bc 8.0 a 12.3 a 127.1 a 9.5 a 16.5 a
OE-37 88.0 c 8.0 a 12.0 a 129.8 a 8.3 a 16.2 a
OE-38 100.3 b 8.3 a 13.0 a 123.4 a 9.6 a 15.0 a

表3

PSAG12-IPT基因导入对棉花产量和产量构成因素的影响"

年份
Year
株系
Line
单株成铃数
Boll number per plant
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
吐絮率
Boll opening percentage
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
2011 冀合321 Jihe 321 12.4 b 4.2 ab 37 a 94.4 a 1257.0 a
OE-30 18.6 a 4.6 a 36 a 71.5 b 1364.8 a
OE-37 12.3 b 4.0 b 40 a 53.2 bc 814.9 b
OE-38 17.7 a 3.8 b 34 a 37.9 c 401.3 c
2012 冀合321 Jihe 321 24.2 a 4.3 a 35 a 49.9 a 1554.9 a
OE-30 24.0 a 4.2 a 33 a 30.0 b 1605.9 a
OE-37 21.0 a 4.0 a 33 a 22.7 c 1405.1 b
OE-38 23.6 a 3.7 a 32 a 8.6 d 1335.5 b

表4

PSAG12-IPT基因导入对棉花品质的影响"

株系
Line
纤维长度
Fiber length
(mm)
整齐度指数
Uniformity index
(%)
马克隆值
Micronaire value
断裂伸长率
Breaking elongation
(%)
断裂比强度
Breaking strength
(cN tex-1)
冀合321 Jihe 321 29.2 a 82.9 c 4.1 b 6.5 a 29.5 a
OE-30 31.6 a 84.7 b 4.4 ab 6.2 a 30.6 a
OE-37 30.5 a 84.0 b 4.3 b 6.4 a 30.5 a
OE-38 29.5 a 85.3 a 4.7 a 6.3 a 29.8 a
[1] Bednarz C W, Oosterhuis D M. Plant potassium partitioning during progression of deficiency symptoms in cotton (Gossypium hirsutum). Bett Crops Plant Food, 1995, 79: 12-14.
[2] 陈义珍, 董合忠. 棉花衰老和熟相形成的生理生态与调控研究进展. 应用生态学报, 2016, 27: 643-651.
Chen Y Z, Dong H Z. Eco-physiology and regulation of leaf senescence and maturity performance in cotton: a review. Chin J Appl Ecol, 2016, 27: 643-651 (in Chinese with English abstract).
[3] 张友昌, 余隆新, 夏松波, 张教海, 王孝刚, 别墅. 长江流域棉区棉花早衰的成因分析及防控措施. 湖北农业科学, 2011, 50: 3920-3923.
Zhang Y C, Yu L X, Xia S B, Zhang J H, Wang X G, Bie S. Causes and controlling measures of cotton premature senescence in Yangtze River cotton area. Hubei Agric Sci, 2011, 50: 3920-3923 (in Chinese with English abstract).
[4] Shen F F, Yu S X, Han X L, Fan S L. Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum. Chin Sci Bull, 2004, 49: 2601-2607.
doi: 10.1360/982004-401
[5] Letham D S, Parker C W, Zhang R, Singh S, Upadhyaya M N, Dart P J, Palni L M S. Xylem-translocated Cytokinin: Metabolism and Function. Berlin: Springer Verlag Press, 1990. pp 275-281.
[6] Noodén L D, Singh S, Letham D S. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol, 1990, 93: 33-39.
pmid: 16667455
[7] Sitton D, Itai C, Kende H. Decreased cytokinin production in the roots as a factor in shoot senescence. Planta, 1967, 73: 296-300.
doi: 10.1007/BF00386684 pmid: 24553676
[8] Barry B F, Rorgers S G, Fraey R T, Brand L. Identification of a Cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA, 1984, 81: 4776-4780.
doi: 10.1073/pnas.81.15.4776
[9] Lohman K N, Gan S S, John M C, Amasino R M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant, 1994, 92: 322-328.
doi: 10.1111/ppl.1994.92.issue-2
[10] Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988.
pmid: 8592746
[11] Mccabe M S, Garratt L C, Schepers F, Jordi W J R M. Effects of PSAG12 -IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol, 2001, 127: 505-516.
doi: 10.1104/pp.010244
[12] Lin Y J, Cao M L, Xu C G, Chen H, Wei J, Zhang Q F. Cultivating rice with delaying led-senescence by P SAG12-IPT gene transfonination. Acta Bot Sin, 2002, 44: 1333-1338.
[13] Sýkorová B, Kurešová G, Daskalova S, Trčková M, Hoyerová K, Raimanová I, Motyka V, Trávníčková A, Elliott M C, Kamínek M. Senescence-induced ectopic expression of the A tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot, 2008, 59: 377-387.
doi: 10.1093/jxb/erm319
[14] An X, Zhang J Y, Liao Y W, Liu L J, Peng D X, Wang B. Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. Febs Open Biol, 2017, 7: 636-644.
[15] Yu X H, Zhu Y Q, Chen X Y, Xu Z H, Zhou B L, Shen X L. Alterations of root and fiber in transgenic cotton plants with chimeric Ph/P- ipt gene expression. Acta Bot Sin, 2000, 42: 59-63.
[16] 李静, 沈法富, 于东海, 韩秀兰. 转基因抗早衰棉的获得. 西北植物学报, 2004, 24: 1419-1423.
Li J, Shen F F, Yu D H, Han X L. The obtaining of transgenic cottons resistant to premature senescence. Acta Bot Boreali- Occident Sin, 2004, 24: 1419-1423 (in Chinese with English abstract).
[17] Liu Y D, Yin Z J, Yu J W, Li J, Wei H L, Han X L, Shen F F. Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant, 2012, 56: 237-246.
doi: 10.1007/s10535-012-0082-6
[18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
pmid: 11846609
[19] 何钟佩. 农作物化学控制实验指导. 北京: 北京农业大学出版社, 1993. pp 6-8.
He Z P. Guidance of Chemical Control Experiments for Crops. Beijing: Beijing Agricultural University Press, 1993. pp 6-8(in Chinese)
[20] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15.
pmid: 16654194
[21] Read S M, Northcote D H. Minimization of variation in the response to different protein of the Coomassie blue G dye-binding: assay for protein. Anal Biochem, 1981, 116: 53-64.
pmid: 7304986
[22] Hobbie L, Estelle M. Genetic approaches to auxin action. Plant Cell Environ, 1994, 17: 525-540.
pmid: 11541116
[23] Wang J, Letham D S, Cornish E, Stevenson K R. Studies of cyokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter: I. Developmental features of the transgenic plants. Aust Plant Physiol, 1997, 24: 661-672.
[24] Wang J, Letham D S, Cornish E, Stevenson K R. Studies of cyokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter: II. ipt and GUS gene expression, cytokinin levels and metabolism. Aust Plant Physiol, 1997, 24: 673-683.
[25] Synková H, Semoradová S, Schnablová R, Wiitters E, Husak M, Valcke R. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu- ipt tobacco during plant ontogeny. Biol Plant, 2006, 50: 31-41.
doi: 10.1007/s10535-005-0071-0
[26] Joshi S, Choukimath A, Isenegger D, Panozzo J, Spangenberg G, Kant S. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front Plant Sci, 2019, 10: 1285.
doi: 10.3389/fpls.2019.01285
[27] Robson P R, Donnison I S, Wang K, Frame B, Pegg S E, Thomas A, Thomas H. Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J, 2004, 2: 101-112.
pmid: 17147603
[28] Barro F, Barcelp P Lazzeri P, Shewry P, Martin A, Ballesteros J. Field evaluation and agronomic performance of transgenic wheat. Theor Appl Genet, 2002, 105: 980-984.
pmid: 12582924
[29] 贾莉莉, 吴鹏昊, 李娟, 汪志星, 陈全家, 王希东, 曲延英. Bt基因导入对海岛棉农艺性状和产量性状影响的研究. 干旱地区农业研究, 2017, 35(2):103-113.
Jia L L, Wu P H, Li J, Wang Z X, Chen Q J, Wang X D, Qu Y Y. Effects of introducing Bt gene on agronomic characters and yield characters of Gossypium barbadense L. Agric Res Arid Areas, 2017, 35(2):103-113 (in Chinese with English abstract).
[30] 孙彩霞, 齐华, 孙加强, 张丽莉, 缪璐. 转基因棉花苗期光合特性研究. 作物学报, 2007, 33: 459-475.
Sun C X, Qi H, Sun J Q, Zhang L L, Miao L. Photosynthetic characteristics of Bt of CpTI-Bt Transgenic cotton at seedling stage. Acta Agric Sin, 2007, 33: 459-475 (in Chinese with English abstract).
[31] Reddy V R, Reddy K R, Acock B. Carbon dioxide and temperature interactions on stem extension, node initiation, and fruiting in cotton. Agric Ecosys Environ, 1995, 55: 17-28.
doi: 10.1016/0167-8809(95)00606-S
[32] 罗丹, 马晓蕾, 牛静, 刘安达, 张钊, 刘家浩, 杨国正. 棉花花芽分化及其影响因素研究进展. 中国棉花, 2020, 47(1):1-5.
Luo D, Ma X L, Niu J, Liu A D, Zhang Z, Liu J H, Yang G Z. Advances in cotton floral bud differentiation and its influencing factors. China Cotton, 2020, 47(1):1-5 (in Chinese with English abstract).
[33] 祁杰, 代建龙, 孙学振, 董合忠. 短季棉的早熟性机制及栽培利用. 棉花学报, 2018, 30: 406-413.
Qi J, Dai J L, Sun X Z, Dong H Z. Short-season cotton: mechanism of early maturity and its cultivation. Cotton Sci, 2018, 30: 406-413 (in Chinese with English abstract).
[34] 任桂杰, 陈永哲, 董合忠, 陈穗云. 棉花花芽分化及部分内源激素变化规律的研究. 西北植物学报, 2000, 20: 847-851.
Ren G J, Chen Y Z, Dong H Z, Chen S Y. Studies on flower bud differentiation and changes of endogenous hormones of Gossypium hirsutum. Acta Bot Boreali-Occident Sin, 2000, 20: 847-851 (in Chinese with English abstract).
[35] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 282: 741-745.
[36] 付强. IPT基因抑制水稻衰老的响应及其对产量的影响. 中国农业大学硕士学位论文, 北京, 2003.
Fu Q. Effect of IPT Gene on Senescence-inhibition and Yield in Rice (Oryza sativa L.). MS Thesis of China Agricultural University, Beijing, China, 2003 (in Chinese with English abstract).
[37] Zhao J, Bai W Q, Zeng Q W, Song S Q, Zhang M, Li X B, Hou L, Xiao Y H, Luo M, Li D, Luo X Y, Pei Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Mol Breed, 2015, 35: 60
doi: 10.1007/s11032-015-0232-6
[38] Sawan Z M, Mohamed A A, Sakr R A, Tarrad A M. Effect of kinetin concentration and methods of application on seed germination, yield components, yield and fiber properties of the Egyptian cotton (Gossypium barbadense). Environ Exp Bot, 2000, 44: 59-68.
pmid: 10927129
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!