欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2278-2289.doi: 10.3724/SP.J.1006.2021.02070

• 研究简报 • 上一篇    下一篇

强再生力水稻品种碳氮营养与激素生理特征研究

黄素华1(), 林席跃2, 雷正平2, 丁在松1,*(), 赵明1   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态与栽培重点开放实验室, 北京100081
    2江西省崇义县农业技术推广站, 江西崇义 341300
  • 收稿日期:2020-10-23 接受日期:2021-04-27 出版日期:2021-11-12 网络出版日期:2021-05-20
  • 通讯作者: 丁在松
  • 作者简介:E-mail: hsuhua@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0301602)

Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability

HUANG Su-Hua1(), LIN Xi-Yue2, LEI Zheng-Ping2, DING Zai-Song1,*(), ZHAO Ming1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Agricultural Technology Extension Station, Chongyi 341300, Jiangxi, China
  • Received:2020-10-23 Accepted:2021-04-27 Published:2021-11-12 Published online:2021-05-20
  • Contact: DING Zai-Song
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301602)

摘要:

明确强再生力品种腋芽萌发的生理基础与激素调控特点对于再生稻品种筛选和栽培技术调控具有重要意义。本研究利用在江西崇义县建立的再生稻品种筛选平台, 分析了2019年筛选的13个品种头季收获时不同部位的非结构性碳水化合物(non-structural carbohydrate, NSC)及全氮含量, 并对促进和抑制腋芽萌发的主要激素油菜素内酯和独脚金内酯的合成和信号转导关键基因的表达进行了研究。结果表明, 13个品种的再生力存在较大的差异, 变化范围为1.26~2.38; 不同品种之间, 不同节位之间的叶片、叶鞘和茎秆的可溶性糖、淀粉和非结构性碳水化合物含量均存在极显著的差异(P值均小于0.001); 而全氮含量除了上下节位茎秆的差异不显著外, 其余的也均存在极显著的差异; 与再生力的相关性分析表明仅有下部节位茎秆的可溶性糖、淀粉和NSC含量与再生力相关性达到显著或极显著水平(R2分别为0.4442*、0.9000**和0.8303**), 而其他均无显著相关性。强再生力品种谷优676中BR合成和信号途径中促进分蘖的基因CYP90ACYP852AD2BRIBSKCYCD3表达水平增高, 而抑制分蘖的基因CYP734A1BZRBKI表达水平较低。可见, 可以利用下部节位茎秆的淀粉含量作为强再生力品种的筛选指标, 同时以BR途径相关基因表达水平作为辅助指标。

关键词: 再生稻, 再生率, 淀粉含量, 油菜素内酯, 基因表达

Abstract:

It is of great significance to clarify the physiological basis and hormone regulation characteristics of axillary bud germination for the selection of ratoon rice cultivars with strong ratooning ability and the regulation of cultivation techniques. In this study, the content of non-structural carbohydrate (NSC) and total nitrogen in different parts of 13 cultivars selected in 2019 were analyzed at the first harvest stage using the screening platform established in Chongyi County, Jiangxi Province. The biosynthesis and signal transduction genes of brassinolides and strigolactones, which promoted and inhibited axillary bud germination, were also studied. The results showed that there were significant differences in the regeneration rate of 13 cultivars, ranging from 1.26 to 2.38. The contents of soluble sugar, starch and non-structural carbohydrate in leaves, leaf sheaths, and stems were significantly different among different cultivars at different node positions (P-values were all less than 0.001). The total nitrogen content was also significant difference among them except for the upper and lower node stems. The correlation analysis showed that the contents of the soluble sugar, starch and NSC of the stem at the lower node had significant or extremely significant correlation with the regeneration rates (R2 = 0.4442*, 0.9000**, and 0.8303**, respectively), while there was no significant correlation in others. The relative expression levels of tillering promoting genes (CYP90A, CYP85A2, D2, BRI, BSK, and CYCD3) in BR synthesis and signal pathway were higher, while the inhibited tillering genes (CYP734A1, BZR, and BKI) were lower in Guyou 676 with higher regeneration rates. In conclusion, the starch content in the stem at the lower node could be used as the screening index of strong regeneration ability cultivar, and also the relative expression levels of BR pathway related genes could be used as supplementary indexes.

Key words: ratoon rice, regeneration rate, starch content, brassinosteroid, gene expression

表1

试验材料名称、类型及产量特性"

品种类型
Cultivar type
品种名称
Cultivar name
品种来源
Variety source
籼型三系杂交稻
Three-line indica hybrid rice
谷优676 Guyou 676 (GY676) 谷丰A×福恢676 Gufeng A×Fuhui 676
赣优7076 Ganyou 7076 (GY7076) 赣香A×福恢7076 Ganxiang A×Fuhui 7076
泸优明占 Luyoumingzhan (LYMZ) 泸香078A×华占 Luxiang 078A×Huazhan
籼型两系杂交稻
Two-line indica hybrid rice
晶两优534 Jingliangyou 534 (JLY534) 晶4155S×R534 Jing 4155S×R534
晶两优华占 Jingliangyouhuazhan (JLYHZ) 晶4155S×华占 Jing 4155S×Huazhan
智两优5336 Zhiliangyou 5336 (ZLY5336) 智农S×闽恢5336 Zhinong S×Minhui 5336
晶两优粤农丝苗 Jingliangyouyuenongsimiao (JLYSM) 4155S×R1212
隆两优华占 Longliangyouhuazhan (LLYHZ) 隆科638S×华占 Longke 638S×Huazhan
隆两优3463 Longliangyou 3463 (LLY3463) 隆科638S×R3463 Longke 638S×R3463
晶两优1377 Jingliangyou 1377 (JLY1377) 晶4155S×R1377 Jing 4155S×R1377
徽两优丝苗 Huiliangyousimiao (HLYSM) 1892S×五山丝苗 1892S×Wushansimiao
深两优7011 Shenliangyou 7011 (SLY7011) 深08S×福恢7011 Shen 08S×Fuhui 7011
籼粳三系杂交稻
Three-line indica-japonica hybrid rice
甬优4949 Yongyou 4949 (YY4949) 甬粳49A×F9249 Yongjing 49A×F9249

表2

基因表达分析的引物"

基因功能
Gene function
基因
Gene
基因座位
Locus
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
内参References GAPDH Os02g0601300 CATGTTCAAGTATGACACCGTC CACCAGTAGACTCAACAACGTA
BR合成
BR synthesis
CYP90B Os03g0227700 GAAGATCCTGCCGGTGTTAG TACTCTTCCATCTCCAGGGATT
CYP90A Os12g0139300 AGCCTCATCAATCTCACTCATT GTCTTGTACGCCGAGATGAG
D2 Os01g0197100 CCAACTGGAAGAGGAGAACATA ACATGTAGTCTGTCCATTGCAA
CYP85A2 Os03g0602300 TGGAGAAGAACATGGAATCACA GGAATGTTGCAATTTCTACGGT
CYP734A1-1 Os06g0600400 GCTAGCTAGGAAAAGACAGGAA GTACCACTAGTCTGTTAGCGAG
CYP 734A1-2 Os01g0388000 ACCACCACTGGAAGAAAATCTA CGTCTTGTTCTTGGTTGTTGTT
BR信号转导
BR signal transduction
BRI Os01g0718300 GATGGCAATGTTCAAGGAGATC GAATGACTGTTGTTTCTACGGG
BSK Os10g0571300 CTTTTGAGTGGGAAGCACATAC TTAGCATACTGCCCTTCTAAGG
BKI Os08g0474500 GTCGTCCTTGTCCAATAATCG CCGGAGATGATGAACGAGTG
BZR Os07g0580500 ATTTGGGCGATTTCATTCTAGC CGTGAATAAAATCAGCCGTGAT
CYCD3 Os09g0111100 AGGGTTCAGTCCAAGAAAAAGA GACAAAACAGCTTCTTCCTCAC
SLs合成
SLs synthesis
D10 Os04g0550600 TGCAAAGAAGATAGGGACAGAG GGAATCCCATTGGAAAAGTGAG
D17 Os01g0746400 CTGTACAAGTTCGAGTGGCA GTTGATGAAGTGGAACGTCAC
D27 Os11g0587000 AGAAGCTTCTGGGCTAAAGAAT ACCTTGATCATTGTGAGGATGT
SLs信号转导
SLs signal transduction
D3 Os06g0154200 ATCTTTCACTATGGGAGCGATT CATGGATGAAAAGCTTCCTGAG
D14 Os03g0203200 AGAAAGAGAGAGAAGAAGCGAG CGCGCTCCCCTTTTATATACTA
D53 Os11g0104300 CTTCCTCTCCAAATTCCCCTT AGAGAAGAGAAAAGGCTTGACC
SPL14 Os08g0509600 GATGGATTGGTCTCTGTAGAGG TTGAACACAAAATAAGGGCAGG
TB1 Os03g0706500 CAATCTTGTGAGCACCGAATTG GTGTGTGGATGGATGATCACAT

表3

不同品种的生育期、产量和再生力"

品种
Cultivar
头季生育期
Main crop
duration (d)
再生季生育期
Ratoon crop
duration (d)
总生育期
Whole crop
duration (d)
头季产量
Main yield
(t hm-2)
再生季产量
Ratoon yield
(t hm-2)
年产量
Annual yield
(t hm-2)
再生力
Regeneration rate
谷优676 GY676 136 71 207 9.42 b 5.25 c 14.37 cd 2.38 a
晶两优534 JLY534 145 72 217 9.48 b 6.17 b 15.65 a 1.99 b
晶两优华占 JLYHZ 140 72 212 8.98 c 5.03 c 14.01 cd 1.97 b
智两优5336 ZLY5336 145 72 217 7.65 e 4.45 d 12.10 f 1.94 b
晶两优粤农丝苗 JLYSM 145 72 217 8.80 c 4.58 d 13.38 e 1.86 b
隆两优华占 LLYHZ 142 72 214 10.13 a 4.53 d 14.66 b 1.85 b
隆两优3463 LLY3463 145 72 217 9.90 a 4.68 d 14.60 b 1.71 c
晶两优1377 JLY1377 147 74 221 9.83 a 5.10 c 14.93 b 1.68 c
深两优7011 SLY7011 147 74 221 8.40 d 4.58 d 12.98 e 1.60 c
甬优4949 YY4949 134 77 210 9.08 c 6.57 a 15.65 a 1.57 d
徽两优丝苗 HLYSM 145 72 217 8.18 d 4.05 e 12.23 f 1.55 d
赣优7076 GY7076 136 71 207 8.94 c 4.73 d 13.67 c 1.43 d
泸优明占 LYMZ 135 71 206 9.20 bc 4.65 d 13.85 c 1.26 e

图1

13个杂交稻品种再生力与再生季、头季及周年产量的相关性"

图2

头季收获前水稻植株上部与下部节位叶片(A)、叶鞘(B)和茎秆(C)的可溶性糖、淀粉和非结构性碳水化合物含量 缩略词同表1。"

表4

不同水稻品种不同节位间可溶性糖、淀粉和NSC含量方差分析"

器官
Organ
差异源
Source of variation
自由度
df
可溶性糖SS 淀粉Starch 非结构性碳水化合物NSC
F P F P F P
叶片Leaf 节位 Node site 1 2113.78 8.66E-44 1727.37 1.44E-41 594.95 3.92E-30
品种 Cultivar 12 854.64 3.12E-55 387.53 2.20E-46 497.91 3.51E-49
叶鞘Sheath 节位 Node site 1 12,932.43 5.13E-64 832.86 1.13E-33 2473.73 1.59E-45
品种 Cultivar 12 1391.03 1.05E-60 173.85 1.63E-37 308.29 7.72E-44
茎秆Stem 节位 Node site 1 3384.81 5.26E-49 1396.50 3.03E-39 3923.92 1.19E-50
品种 Cultivar 12 2564.40 1.35E-67 1476.25 2.24E-61 3189.50 4.71E-70

图3

头季收获前水稻植株上部与下部节位叶片(A)、叶鞘(B)和茎秆(C)的可溶性糖、淀粉和非结构性碳水化合物含量的统计特征 箱图内的实线和虚线分别表示中位值和平均值; 箱图的上下边表示所有数据的上、下四分位数, 底部和顶部条形表示第5和第95个百分位, 底部和顶部圆点分别表示异常值。"

表5

再生力与不同部位叶片、叶鞘和茎秆的SS、淀粉和NSC含量的相关性"

器官
Organ
部位
Site
可溶性糖 SS 淀粉 Starch 非结构性碳水化合物 NSC
R2 F P R2 F P R2 F P
叶片Leaf 上部 Upper 0.0684 0.8077 0.3881 0.1077 1.3276 0.2737 0.1593 2.0851 0.1766
下部 Lower 0.0150 0.1678 0.6900 0.1692 2.2408 0.1625 0.1029 1.2623 0.2851
叶鞘Sheath 上部 Upper 0.0002 0.0026 0.9603 0.1917 2.6093 0.1345 0.0706 0.8362 0.3801
下部 Lower 0.2005 2.7586 0.1249 0.0784 0.9356 0.3542 0.1709 2.2681 0.1602
茎秆Stem 上部 Upper 0.3241 5.2743 0.0423 0.2771 4.2160 0.0646 0.3317 5.4589 0.0394
下部 Lower 0.4442* 8.7913 0.0129 0.9000** 98.9956 0.0000 0.8303** 53.8256 0.0000

图4

头季收获前水稻植株上部与下部节位叶片(左)、叶鞘(中)和茎秆(右)的全氮含量 缩略词同表1。"

图5

头季收获前水稻腋芽和叶片BR合成与代谢关键基因的相对表达量 缩略词同表1。同一类型柱图上方不同小写字母表示在0.05水平下差异显著。"

图6

头季收获前水稻腋芽和叶片BRs信号转导途径关键基因的相对表达量 缩略词同表1。同一类型柱图上方不同小写字母表示在0.05水平下差异显著。"

图7

头季收获前水稻腋芽和叶片SL合成和信号转导途径关键基因的相对表达量 缩略词同表1。同一类型柱图上方不同小写字母表示在0.05水平下差异显著。"

[1] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717 (in Chinese with English abstract).
[2] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23: 392-401 (in Chinese with English abstract).
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin J Eco-Agric, 2015, 23: 392-401.
[3] Lin W. Developmental status and problems of rice ratooning. J Integr Agric, 2019, 18: 246-247.
doi: 10.1016/S2095-3119(19)62568-2
[4] 徐富贤, 熊洪. 杂交中稻粒叶比与再生力的关系. 中国水稻科学, 2000, 14: 249-252.
Xu F X, Xiong H. Relationship between ratio of grain to leaf area and ratooning ability in middle season hybrid rice. Chin J Rice Sci, 2000, 14: 249-252 (in Chinese with English abstract).
[5] 徐富贤, 熊洪, 赵甘霖, 洪松. 杂交中稻强再生力品种的冠层特征研究. 作物学报, 2002, 28: 426-430.
Xu F X, Xiong H, Zhao G L, Hong S. A study on the canopy characters of mid-season hybrid rice in relation to their ratooning ability. Acta Agron Sin, 2002, 28: 426-430 (in Chinese with English abstract).
[6] 任天举, 张晓春, 王培华, 李经勇. 杂交中稻、再生稻两季高产组合的主要特征特性及配合力效应. 西南农业学报, 2005, 18: 382-386.
Ren T J, Zhang X C, Wang P H, Li J Y. Analysis of combining ability effect and the dominant characteristics of crosses with high yields in twice of hybrid mid-season and ratooning rice. Southwest Chin J Agric Sci, 2005, 18: 382-386 (in Chinese with English abstract).
[7] 任天举, 蒋志成, 王培华, 李经勇, 张晓春, 鲁远源, 刘贤双. 杂交中稻再生力与头季稻农艺性状的相关性研究. 作物学报, 2006, 32: 613-617.
Ren T J, Jiang Z C, Wang P H, Li J Y, Zhang X C, Lu Y Y, Liu X S. Correlation of ratooning ability with its main crop agronomic traits in midseason hybrid rice. Acta Agron Sin, 2006, 32: 613-617 (in Chinese with English abstract).
[8] 徐富贤, 熊洪, 洪松. 杂交中稻抽穗后再生芽生长与头季稻茎鞘物质积累的关系. 中国水稻科学, 1997, 11: 160-164.
Xu F X, Xiong H, Hong S. Relation between axillary bud growth and matter accumulation of stem-sheath after heading of main crop in hybrid rice. Chin J Rice Sci, 1997, 11: 160-164 (in Chinese with English abstract).
[9] Chen Q, He A B, Wang W Q, Peng S B, Huang J L, Cui K H, Nie L X. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Res, 2018, 223: 164-170.
doi: 10.1016/j.fcr.2018.04.010
[10] He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L X. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Res, 2019, 236: 155-164.
doi: 10.1016/j.fcr.2019.04.001
[11] 凌启鸿, 苏祖芳, 侯康平, 郭宏文. 水稻潜伏芽生长和穗分化形成规律及其应用的研究. 中国农业科学, 1989, 22(1):35-43.
Ling Q H, Su Z F, Hou K P, Guo H W. Studies on the growth and panicle differentiation of resting bud and its application in rice plants. Sci Agric Sin, 1989, 22(1):35-43 (in Chinese with English abstract).
[12] Wang Y C, Zheng C, Xiao S, Sun Y T, Huang J L, Peng S B. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Res, 2019, 236: 107569.
[13] 陈鸿飞, 庞晓敏, 张仁, 张志兴, 徐倩华, 方长旬, 李经勇, 林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响. 作物学报, 2017, 43: 1507-1517.
Chen H F, Pang X M, Zhang R, Zhang Z X, Xu Q H, Fang C X, Li J Y, Lin W X. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice. Acta Agron Sin, 2017, 43: 1507-1517 (in Chinese with English abstract).
[14] Zhang C, Bai M Y, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014, 33: 683-696.
doi: 10.1007/s00299-014-1578-7 pmid: 24667992
[15] Liang J, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[16] Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236.
doi: 10.1093/nar/gkx725
[17] 唐浩, 陈立云, 杨益善, 肖应辉, 李军民. 水稻的再生率及其与产量性状的关系. 杂交水稻, 2003, 18(3):55-58.
Tang H, Chen L Y, Yang Y S, Xiao Y H, Li J M. Correlation of ratoon rate of rice to yield characters. Hybrid Rice, 2003, 18(3):55-58 (in Chinese with English abstract).
[18] 胡志华, 李大明, 徐小林, 黄庆海, 柳开楼, 胡惠文, 叶会财, 周利军, 余喜初. 再生稻轻简化种植技术研究进展. 中国稻米, 2017, 23(3):13-17.
Hu Z H, Li D M, Xu X L, Huang Q H, Liu K L, Hu H W, Ye H C, Zhou L J, Yu C X. Research progress of simplified cultivation technology of ratoon rice. China Rice, 2017, 23(3):13-17 (in Chinese with English abstract).
[19] 刘怀珍, 黄庆, 陆秀明, 李康活, 李惠芬, 张彬. 一季中晚稻-再生稻高产栽培技术研究. 广东农业科学, 2012, 39(20):1-3.
Liu H Z, Huang Q, Lu X M, Li K H, Li H F, Zhang B. Study on high-yielding cultivation techniques in the ratoon rice of single-middle-late season rice. Guangdong Agric Sci, 2012, 39(20):1-3 (in Chinese with English abstract).
[20] 李义珍. 南方再生稻超高产理论与技术模式研究及应用. 福州: 福建科学技术出版社, 2008.
Li Y Z. Research and Application of Super High Yield Theory and Technical Model of Ratoon Rice in Southern China. Fuzhou: Fujian Science and Technology Press, 2008 (in Chinese).
[21] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in central China. Chin J Rice Sci, 2019, 33: 47-56.
[22] Wang Y H, Li J Y. The plant architecture of rice (Oryza sativa). Plant Mol Biol, 2005, 59: 75-84.
doi: 10.1007/s11103-004-4038-x
[23] Binne Z, Pospísil T, Zeljkovic S A. Strigolactones: new plant hormones in action. Planta, 2016, 243: 1311-1326.
doi: 10.1007/s00425-015-2455-5
[24] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
pmid: 14615594
[25] Tong H N, Liu L C, Jin Y, Du L, Yin Y H, Qian Q, Zhu L H, Chu C C. DWARF AND LOWTILLERING acts as a direct downstream target of a GSK3/ SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012, 24: 2562-2577.
doi: 10.1105/tpc.112.097394
[26] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839-13844.
doi: 10.1073/pnas.0706386104
[27] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng Xi B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[28] Lin H, Wang R, Qian Q, Yan, M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987
[29] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCF D3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878
[30] Xu H B, Lian L, Wang F X, Jiang J H, Lin Q, Xie H G, Luo X, Zhu Y S, Zhuo C Y, Wang J L, Xie H A, Jiang Z W, Zhang J F. Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice. BMC Plant Biol, 2020, 20: 76.
doi: 10.1186/s12870-020-2277-x
[31] 张荟, 郑轶, 涂诗航, 周鹏, 卓传营, 张上守. 杂交稻新品种高留桩再生力筛选试验. 福建稻麦科技, 2015, 33(3):11-14.
Zhang H, Zheng Y, Tu S H, Zhou P, Zhuo C Y, Zhang S S. Screening of ratooning ability with high stubble for new hybrid rice combinations. Fujian Sci Technol Rice Wheat, 2015, 33(3):11-14 (in Chinese with English abstract).
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[6] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[7] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[8] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[9] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[12] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[13] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[14] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[15] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!