欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1222-1234.doi: 10.3724/SP.J.1006.2022.14060

• 耕作栽培·生理生化 • 上一篇    下一篇

不同施肥水平下甘蔗植株根系内生细菌群落结构特征

肖健1(), 陈思宇1, 孙妍1, 杨尚东1,*(), 谭宏伟2,*()   

  1. 1广西大学农学院, 广西南宁 530004
    2广西农业科学院 / 广西甘蔗遗传改良重点实验室, 广西南宁 530007
  • 收稿日期:2021-04-13 接受日期:2021-07-12 出版日期:2022-05-12 网络出版日期:2021-08-03
  • 通讯作者: 杨尚东,谭宏伟
  • 作者简介:E-mail: 1318513279@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFD1000505);国家自然科学基金项目(31760368);广西壮族自治区农业科学院广西甘蔗遗传改良重点实验室开放课题(16-K-04-01);国家现代农业产业技术体系建设专项(甘蔗宿根栽培, CARS170206);广西创新驱动发展专项(桂科AA17202042);广西甘蔗产业创新团队甘蔗栽培岗资助

Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications

XIAO Jian1(), CHEN Si-Yu1, SUN Yan1, YANG Shang-Dong1,*(), TAN Hong-Wei2,*()   

  1. 1Agricultural College, Guangxi University, Nanning 530004, Guangxi, China
    2Guangxi Key Laboratory of Sugarcane Genetic Improvement / Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
  • Received:2021-04-13 Accepted:2021-07-12 Published:2022-05-12 Published online:2021-08-03
  • Contact: YANG Shang-Dong,TAN Hong-Wei
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000505);National Natural Science Foundation of China(31760368);Guangxi Zhuang Autonomous Region Academy of Agricultural Sciences Guangxi Sugarcane Genetic Improvement Key Laboratory Open Project(16-K-04-01);China Agricuture Research System (Sugarcane Host Cultivation, CARS170206);Guangxi Innovation-Driven Development Special Project (Guike AA17202042);Guangxi Sugarcane Industry Innovation Team Sugarcane Cultivation Post

摘要:

分析不同施肥水平下甘蔗植株根系内生细菌群落结构特征, 旨在解析不同施肥水平对甘蔗植株内生细菌群落的影响, 为挖掘和利用有益内生细菌及其功能提供理论依据。结果发现, 门分类水平, 施肥处理条件下甘蔗植株根系中放线菌门(Actinobacteria)细菌丰度占比均低于相应的不施肥处理, 但绿弯菌门(Chloroflexi)细菌丰度占比均高于不施肥处理。属分类水平, HaliangiumAcidicapsaunclassified_f__Ktedonobacteraceaeunclassified_f__ Acidobacteriaceae_Subgroup_1是常规施肥水平(3000 kg hm-2, H处理)条件下甘蔗植株根系特有的优势内生细菌属; 而鞘氨醇单胞菌属(Sphingomonas)是减量施肥水平(1500 kg hm-2, M处理)下特有的优势内生细菌属; 中慢生根瘤菌属(Mesorhizobium)、norank_f__BIrii41、糖霉菌属(Glycomyces)、norank_f__67-14、Reyranellaunclassified_f__ Steroidobacteraceaeunclassified_f__Xanthobacteraceaenorank_f__RoseiflexaceaeDongia是低施肥水平处理(300 kg hm-2, L处理)甘蔗植株根系特有的内生细菌优势菌属; 柄杆菌属(Caulobacter)、假诺卡菌属(Pseudonocardia)、诺卡氏菌属(Nocardia)、Kitasatosporanorank_f__norank_o__norank_c__ActinobacteriaOceanibaculum和拟无枝菌酸菌属(Amycolatopsis)是不施肥水平(CK)条件下甘蔗植株根系中特有的内生细菌优势属。基因功能预测结果显示, 与不施肥处理相比, 施肥不仅影响甘蔗植株根系内生细菌群落组成, 而且影响植株根系内生细菌的代谢功能; 但不同施肥水平处理之间, 依施肥量的多少对甘蔗植株根系内生细菌群落组成影响存在显著差异。与常规施肥相比, 减量施肥(1500 kg hm-2)处理不仅没有导致甘蔗产量显著降低, 而且没有显著改变常规施肥条件下甘蔗植株内生细菌的群落组成和代谢功能, 完全可替代常规施肥进行施肥管理。

关键词: 甘蔗, 减量施肥, 内生细菌, 高通量测序

Abstract:

To explore the beneficial endophytic bacteria in sugarcanes and their functions, we analyzed the characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications. At the phylum level, the proportion of Actinobacteria in roots of sugarcanes under different fertilization levels were lower than that in the control. However, the proportion of Chloroflexi in roots of sugarcanes under different fertilization levels applications were higher than that in CK. At the genus level, Haliangium, Acidicapsa, unclassified_f__Ktedonobacteraceae, and unclassified_f__Acidobacteriaceae_ Subgroup_1 were the specific dominant endophytic bacterial genera in root of sugarcanes under conventional fertilization level (3000 kg hm-2, H treatment); while Sphingomonas was the specific dominant endophytic bacterial genus in roots of sugarcanes under fertilization level (1500 kg hm-2, M treatment); Mesorhizobium, norank_f__BIrii41, Glycomyces, norank_f__67-14, Reyranella, unclassified_f__Steroidobacteraceae, unclassified_f__Xanthobacteraceae, norank_f__Roseiflexaceae, and Dongia were the specific dominant endophytic bacterial genus in roots of sugarcanes under the fertilization level (300 kg hm-2, L treatment). On the contrary, Caulobacter, Pseudonocardia, Nocardia, Kitasatospora, norank_f__norank_o__norank_c__Actinobacteria, Oceanibaculum, and Amycolatopsis were the unique dominant endophytic bacterial genera in root of sugarcane without fertilization application (control). And Actinospica, Catenulispora, Acidothermus, Dyella, and norank_f__Xanthobacteraceae were lost in root of sugarcanes under low nitrogen applications. Gene function prediction also revealed that, compared to no-fertilization treatment, both the endophytic bacterial community structure and the metabolic functions of endophytic bacteria in roots of sugarcanes were affected by different fertilizer applications. However, the structures of endophytic bacterial community in roots of sugarcane were significant differences among different fertilization treatments depending on the amounts of fertilizer applications. Compared to conventional fertilization, the yields of sugarcanes, and the structure, metabolic function of endophytic bacteria in roots of sugarcanes were not significantly changed by fertilizer application under 1500 kg hm-2 treatment. In conclusion, the conventional fertilization at the present stage can be substituted by reducing fertilizer application from 3000 kg hm-2 to 1500 kg hm-2 level in sugarcane.

Key words: sugarcane (Saccharum L.), reduced fertilization, endophytic bacteria, high-throughput sequencing

表1

不同施肥水平下甘蔗产量"

样本
Sample name
产量Yield
2018 2019 2020
CK 56.41±2.59 b 58.02±5.32 b 53.95±5.87 b
H 111.09±2.69 a 114.15±5.21 a 108.04±11.22 a
M 107.78±6.92 a 106.60±2.68 a 99.24±5.36 a
L 61.21±4.13 b 64.29±4.05 b 60.79±7.10 b

表2

不同施肥水平下甘蔗植株根系内生细菌不同分类水平数量"

样本
Sample
分类操作单元数量
Number of operational
taxonomic units (OTU)
不同分类阶元归类数量 Number of different taxonomic categories

Phylum

Class

Order

Family

Genus

Species
CK 406 14 26 73 110 185 276
H 569 18 34 84 138 231 372
M 570 19 31 84 136 234 362
L 641 20 35 93 152 266 419
总计 Total 963 20 40 105 184 338 565

表3

不同施肥水平下甘蔗植株根系内生细菌Alpha多样性"

样本
Sample name
香农指数
Shannon index
辛普森指数
Simpson index
ACE指数
ACE index
Chao1指数
Chao1 index
CK 3.41±0.02 c 0.082±0.012 a 414.08±29.20 b 309.04±19.74 b
H 4.05±0.06 ab 0.039±0.001 b 522.80±9.85 a 538.11±8.83 a
M 4.45±0.12 a 0.030±0.003 b 584.38±34.07 a 545.31±4.66 a
L 4.20±0.06 ab 0.046±0.017 ab 507.29±12.03 a 460.50±82.69 a

图1

不同施肥水平下甘蔗植株根系内生细菌门分类水平细菌组成 样本缩写同表1。"

图2

不同施肥水平下甘蔗植株根系内生细菌属分类水平细菌组成 样本缩写同表1。"

图3

不同施肥水平下甘蔗植株根系内生细菌属和种分类水平Venn图 样本缩写同表1。"

表4

预测功能基因在不同样品间的占比(一级功能层)"

一级功能层 Pathway level 1 H M L CK
代谢Metabolism 25.86 24.16 21.40 28.58
环境信息处理Environmental information processing 24.76 23.43 23.35 28.47
遗传信息处理Genetic information processing 27.02 24.70 21.22 27.05
细胞过程Cellular processes 24.65 24.85 22.42 28.09
人类疾病Human diseases 24.96 24.85 22.96 27.23
有机系统Organismal systems 26.23 23.71 21.30 28.76

图4

OTU水平不同施肥处理下甘蔗植株根系内生细菌COG功能分类 样本缩写同表1。"

[1] Chandel A K, Silva S S D, Carvalho W, Singh O V. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol, 2012, 87:11-20.
[2] Li Y R. China: an emerging sugar super power. Sugar Technol, 2004, 6:213-227.
doi: 10.1007/BF02942501
[3] 赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23:864-873.
Zhao Y N, Su M M, Lyu Y, Kuang F H, Chen X J, Zhang Y Q, Shi X J. Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. Plant Nutr Fert Sci, 2017, 23:864-873 (in Chinese with English abstract).
[4] 吴宪, 王蕊, 胡菏, 修伟明, 李刚, 赵建宁, 杨殿林, 王丽丽, 王欣奕. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应. 环境科学, 2020, 41:4669-4681.
Wu X, Wang R, Hu H, Xiu W M, Li G, Zhao J N, Yang D L, Wang L L, Wang X Y. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil. Chin J Environ Sci, 2020, 41:4669-4681 (in Chinese with English abstract).
[5] Li Y R, Yang L T. Sugarcane agriculture and sugar industry in China. Sugar Technol, 2015, 17:1-8.
doi: 10.1007/s12355-014-0342-1
[6] 许霞, 苟永刚, 罗莎莎, 王宇姝, 余玲玲, 王建武. 减量施氮对甘蔗//大豆间作系统产量稳定性的影响. 热带作物学报, 2020, 41:1354-1365.
Xu X, Gou Y G, Luo S S, Wang Y S, Yu L L, Wang J W. Effect of nitrogen reduction on yield stability of sugarcane-soybean intercropping system. Chin J Trop Crops, 2020, 41:1354-1365 (in Chinese with English abstract).
[7] Robertson G P, Vitousek P M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour, 2009, 34:97-125.
doi: 10.1146/energy.2009.34.issue-1
[8] 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018, 51:1931-1939.
Qu H P, Zhou L Q, Huang J S, Zeng Y, Zhu X H, Xie R L, Tan H W, Huang B Y. Effects of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Sci Agric Sin, 2018, 51:1931-1939 (in Chinese with English abstract).
[9] Yang S M, Li F M, Sukhdev S M, Wang P, Suo D R, Wang J G. Long-term fertilization effects on crop yield and nitrate nitrogen, accumulation in soil in northwestern China. Agron J, 2004, 96:1039-1049.
doi: 10.2134/agronj2004.1039
[10] 郭强, 莫勇武, 唐利球, 谭宏伟, 马文清, 秦昌鲜, 何为中, 闭德金, 彭崇, 施泽升, 何洪良, 陈海生. 蔗渣还田和减量施肥对甘蔗农艺性状和品质的影响. 广西糖业, 2019, (3):31-35.
Guo Q, Mo Y W, Tang L Q, Tan H W, Ma W Q, Qin C X, He W Z, Bi D J, Peng C, Shi Z S, He H L, Chen H S. Effects of sugarcane bagasse mulching and reduced fertilization on agronomic characters and quality of sugarcane. Guangxi Sugar Ind, 2019, (3):31-35 (in Chinese with English abstract).
[11] Pan H, Chen M M, Feng H J, Wei M, Song F P, Lou Y H, Cui X M, Wang H, Zhuge Y P. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res, 2020, 198:104540.
doi: 10.1016/j.still.2019.104540
[12] 苟琪, 吕燕, 张涛, 李靖宇, 赵会君, 刘建利. 宁夏枸杞叶不同生长时期内生细菌群落动态及其影响因素. 生态学杂志, 2020, 39:2593-2601.
Gou Q, Lyu Y, Zhang T, Li J Y, Zhao H J, Liu J L. Dynamics and influencing factors of endophytic bacterial community in leaves of Lycium barbarum during different growth periods. Chin J Ecol, 2020, 39:2593-2601 (in Chinese with English abstract).
[13] 顾美英, 古丽尼沙·沙依木, 张志东, 朱静, 刘晓静, 唐琦勇, 欧提库尔·玛合水提, 宋素琴, 冯雷, 唐光木, 徐万里. 黑果枸杞不同组织内生细菌群落多样性. 微生物学报, 2021, 61:152-166.
Gu M Y, Gulinisha S, Zhang Z D, Zhu J, Liu X J, Tang Q Y, Outikuer M, Song S Q, Feng L, Tang G M, Xu W L. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr. Acta Microbiol Sin, 2021, 61:152-166 (in Chinese with English abstract).
[14] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del R T G, Edgar R C, Eickhorst T, Ley R E, Hugenholtz P, Tringe S G, Dangl J L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488:86-90.
doi: 10.1038/nature11237
[15] Bulgarelli D, Garrido-Oter R, Münch P C, Weiman A, Dröge J, Pan Y, McHardy A C, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015, 17:392-403.
doi: S1931-3128(15)00031-1 pmid: 25732064
[16] Grice E A, Kong H H, Conlan S, Deming C B, Davis J, Young A C, Bouffard G G, Blakesley R W, Murray P R, Green E D, Turner M L, Segre J A. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324:1190-1192.
doi: 10.1126/science.1171700
[17] Simpson E H. The measurement of diversity. Nature, 1949, 163:688.
doi: 10.1038/163688a0
[18] Chao A, Wang W H, Chen Y C, Kuo C Y. Estimating the number of shared species in two communities. Statist Sin, 2000, 10:227-246.
[19] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响. 作物学报, 2020, 46:596-613.
doi: 10.3724/SP.J.1006.2020.94102
Luo J, Lin Z L, Li S Y, Que Y X, Zhang C F, Yang Z Q, Yao K C, Feng J F, Chen J F, Zhang H. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field. Acta Agron Sin, 2020, 46:596-613 (in Chinese with English abstract).
[20] 李儒仲, 侬芳廷, 杨二鹏, 韦承坤, 黄严, 陈超君, 梁和. 机械种植下不同施氮水平对甘蔗生长、产量及含糖量的影响. 广西职业技术学院学报, 2015, 8(6):1-4.
Li R Z, Nong F T, Yang E P, Wei C K, Huang Y, Chen C J, Liang H. Effects of nitrogen application on sugarcane’s growth, yield and sugar content by mechanical planting. J Guangxi Vocat Technol Coll, 2015, 8(6):1-4 (in Chinese with English abstract).
[21] 谢金兰, 陈引芝, 朱秋珍, 刘晓燕, 吴建明, 王维赞. 氮肥施用量与施用方法对甘蔗生长的影响. 中国农学通报, 2012, 28(31):237-242.
Xie J L, Chen Y Z, Zhu Q Z, Liu X Y, Wu J M, Wang W Z. Effects of nitrogen fertilizer and application methods on sugarcane growth. Chin Agric Sci Bull, 2012, 28(31):237-242 (in Chinese with English abstract).
[22] 杨文亭, 李志贤, 赖健宁, 吴鹏, 章莹, 王建武. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响. 作物学报, 2014, 40:556-562.
Yang W T, Li Z X, Lai J N, Wu P, Zhang Y, Wang J W. Effects of sugarcane-soybean intercropping and reduced nitrogen application on yield and major agronomic traits of sugarcane. Acta Agron Sin, 2014, 40:556-562 (in Chinese with English abstract).
[23] 刘亚男, 马海洋, 冼皑敏, 王琚钢, 陈菁, 石伟琦. 施氮方式和灌水量对甘蔗农艺性状、养分累积及产量的影响. 南方农业学报, 2017, 48:252-258.
Liu Y N, Ma H Y, Xian A M, Wang J G, Chen J, Shi W Q. Effects of different nitrogen application methods and irrigation amounts on agronomic characters, nutrient accumulation and yield of sugarcane. J South Agric, 2017, 48:252-258 (in Chinese with English abstract).
[24] 张跃彬, 樊仙, 刀静梅. 不同氮水平对甘蔗生长的影响. 中国糖料, 2013, (3):15-17.
Zhang Y B, Fan X, Dao J M. Different nitrogen levels on the effect of the growth of sugarcane. Sugar Crops China, 2013, (3):15-17 (in Chinese with English abstract).
[25] 韦剑锋, 梁启新, 陈超君, 蓝立斌, 梁和. 施氮量对甘蔗氮素吸收与利用的影响. 广东农业科学, 2011, 38(19):66-68.
Wei J F, Liang Q X, Chen C J, Lan L F, Liang H. Effect of application amount of nitrogen fertilizer (~(15) N) on nitrogen absorption and utilization in sugarcane. Guangdong Agric Sci, 2011, 38(19):66-68 (in Chinese with English abstract).
[26] Samuelson M E, Larsson C M. Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci, 1993, 93:77-84.
doi: 10.1016/0168-9452(93)90036-Y
[27] 韦朝海, 肖美兰. 水生生态调控及水污染治理中微生物的应用. 应用基础与工程科学学报, 1999, (4):3-5.
Wei C H, Xiao M L. Aqueous ecological regulation and application of microorganisms in water pollution control. J Basic Sci Eng, 1999, (4):3-5 (in Chinese with English abstract).
[28] 石晶盈, 陈维信, 刘爱媛. 植物内生菌及其防治植物病害的研究进展. 生态学报, 2006, 26:2395-2401.
Shi J Y, Chen W X, Liu A Y. Advances in the study of endophytes and their effects on control of plant diseases. Acta Ecol Sin, 2006, 26:2395-2401 (in Chinese with English abstract).
[29] 张志红, 彭桂香, 李华兴, 蔡燕飞, 张新明, 赵兰凤. 生物肥与甲壳素和恶霉灵配施对香蕉枯萎病的防治效果. 生态学报, 2011, 31:1149-1156.
Zhang Z H, Peng G X, Li H X, Cai Y F, Zhang X M, Zhao L F. Effects on controlling banana Fusarium wilt by bio-fertilizer, chitosan, hymexazol and their combinations. Acta Ecol Sin, 2011, 31:1149-1156 (in Chinese with English abstract).
[30] 乔鹏, 汤利, 郑毅, 李少明. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征. 植物营养与肥料学报, 2010, 16:1086-1093.
Qiao P, Tang L, Zheng Y, Li S M. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean. Plant Nutr Fert Sci, 2010, 16:1086-1093 (in Chinese with English abstract).
[31] 杨建波. 间作大豆对甘蔗生长及内生细菌、固氮细菌多样性的效应. 广西大学博士学位论文, 广西南宁, 2014.
Yang J B. Effects of Intercropping with Soybean on Growth of Sugarcane and Diversities of Endophytic Bacteria and Endophytic Nitrogen-fixing Bacteria. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2014 (in Chinese with English abstract).
[32] 冯天祥, 王玲, 陈海敏, 盛清, 左锐, 谢文杰. 植物内生放线菌功能及生物活性物质研究进展. 中国生物工程杂志, 2015, 35(4):98-106.
Feng T X, Wang L, Chen H M, Sheng Q, Zuo R, Xie W J. Research advances on function and bioactive substances of endophytic actinomycetes. China Biotechnol, 2015, 35(4):98-106 (in Chinese with English abstract).
[33] 赵立君, 刘云根, 王妍, 赵蓉, 任伟, 徐鸣洲. 典型高原湖滨带底泥细菌群落结构及多样性特征. 微生物学通报, 2020, 47:401-410.
Zhao L J, Liu Y G, Wang Y, Zhao R, Ren W, Xu M Z. Bacterial community structure and diversity of sediments in a typical plateau lakeshore. Microbiol China, 2020, 47:401-410 (in Chinese with English abstract).
[34] 秦杰, 高振峰, 岳爱琴, 张永坡, 高春艳, 赵晋忠, 王敏, 杜维俊. 一株晋大53号大豆中慢生根瘤菌的分离鉴定及抗逆分析. 大豆科学, 2020, 39:898-905.
Qin J, Gao Z F, Yue A Q, Zhang Y P, Gao C Y, Zhao J Z, Wang M, Du W J. Isolation, identification and stress resistance analysis of a Mesorhizobium isolated from soybean variety Jinda 53. Soybean Sci, 2020, 39:898-905 (in Chinese with English abstract).
[35] 韩晓雪, 吕玲玲, 罗晓霞, 张利莉. 罗布泊糖霉菌属放线菌系统进化分析. 塔里木大学学报, 2014, 26(4):8-15.
Han X X, Lyu L L, Luo X X, Zhang L L. Evolutionary analysis of the genus Glycomyces isolated from Lop Nur. J Tarim Univ, 2014, 26(4):8-15 (in Chinese with English abstract).
[36] 苏小惠, 白玉超, 佘玮, 杨瑞芳, 崔丹丹, 李林林, 王继龙, 崔国贤. 不同苎麻品种根际微生物多样性群落结构分析. 中国麻业科学, 2019, 41(3):114-121.
Su X H, Bai Y C, She W, Yang R F, Cui D D, Li L L, Wang J L, Cui G X. Microbial community structures and diversities in different ramie varieties rhizosphere soils. Plant Fiber Sci China, 2019, 41(3):114-121 (in Chinese with English abstract).
[37] 张芳芳, 宋希强, 朱国鹏. 不同生境下五唇兰根部可培养内生细菌多样性研究. 植物科学学报, 2016, 34:135-142.
Zhang F F, Song X Q, Zhu G P. Diversity of culturable endophytic bacteria isolated from the root tissues of Phalaenopsis pulcherrimain two different habitats. Plant Sci J, 2016, 34:135-142 (in Chinese with English abstract).
[38] 陈泽斌, 黄丽, 夏振远, 赵兴能, 徐胜光, 林丽, 任禛, 靳松, 王墨浪. 云南不同地区烟草内生细菌多样性特征. 西南农业学报, 2015, 28:857-861.
Chen Z B, Huang L, Xia Z Y, Zhao X N, Xu S G, Lin L, Ren Z, Jin S, Wang M L. Species diversity characteristics of endophytic bacteria in tobacco at different regions of Yunnan province. J Southwest Agric Univ, 2015, 28:857-861 (in Chinese with English abstract).
[39] 楚敏, 张丽娟, 刘晓静, 朱静, 王玮, 顾美英, 谢玉清, 张志东. 不同产地及品种大蒜内生菌群落多样性分析及拮抗作用测定. 新疆农业科学, 2017, 54:2067-2074.
doi: 10.6048/j.issn.1001-4330.2017.11.014
Chu M, Zhang L J, Liu X J, Zhu J, Wang W, Gu M Y, Xie Y Q, Zhang Z D. Diversity of the endophytes and screening of antagonistic microbes in Garlic varieties from different producing areas. Xinjiang Agric Sci, 2017, 54:2067-2074 (in Chinese with English abstract).
[1] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[2] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[3] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[4] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[8] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[9] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[10] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[11] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[12] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[13] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[14] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[15] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!