欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1746-1760.doi: 10.3724/SP.J.1006.2022.11053

• 耕作栽培·生理生化 • 上一篇    下一篇

基于无人机平台多模态数据融合的小麦产量估算研究

张少华1(), 段剑钊1,2, 贺利1, 井宇航1, 郭天财1, 王永华1, 冯伟1,*()   

  1. 1河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室, 河南郑州 450046
    2International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
  • 收稿日期:2021-06-02 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-26
  • 通讯作者: 冯伟
  • 作者简介:E-mail: 15939266989@163.com
  • 基金资助:
    国家“十三五”重点研发计划粮食丰产增效科技创新项目(2018YFD0300701);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03);河南省科技攻关项目(212102110041)

Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion

ZHANG Shao-Hua1(), DUAN Jian-Zhao1,2, HE Li1, JING Yu-Hang1, Urs Christoph Schulthess2,*(), Azam Lashkari1,2, GUO Tian-Cai1, WANG Yong-Hua1, FENG Wei1,*()   

  1. 1Agronomy College of Henan Agriculture University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, Henan, China
    2International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
  • Received:2021-06-02 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-26
  • Contact: Urs Christoph Schulthess,FENG Wei
  • Supported by:
    National “13th Five-Year” Key Research and Development Program of China(2018YFD0300701);China Agriculture Research System of MOF and MARA(CARS-03);Key Technologies Research & Development Program of Henan Province, China(212102110041)

摘要:

作物产量估测关系到人民生活质量和国家粮食安全问题, 在田块尺度下及时准确估算产量, 对于农事操作管理、收获、销售及种植计划制定均具有重要意义。选择地势起伏及空间差异较大的农田为研究区, 利用低空无人机遥感平台搭载多光谱相机、热红外相机和RGB相机, 同步获取小麦关键生育时期的无人机遥感影像, 并提取光谱反射率、热红外温度和数字高程信息。首先统计不同地形特征下遥感参数和生长指标的空间变异情况, 分析植被指数和温度参数与小麦产量的相关性, 然后利用多元线性回归(multiple linear regression, MLR)、偏最小二乘回归(partial least squares regression, PLSR)、支持向量机回归(support vector machine regression, SVR)和随机森林回归(random forest regression, RFR) 4种机器学习方法以单模态数据和多模态遥感信息融合2种方式进行建模, 比较单模态数据和多模态数据融合的产量估测能力。结果表明, 坡度是影响作物生长和产量的重要因子, 3个生育期内, 不同坡度等级下遥感参数差异明显, 土壤含水量、植株含水量和地上部生物量与坡度的相关性均达显著水平, 植被指数和温度参数与产量的相关性均达显著水平。依据与产量的相关性, 筛选7个植被指数(NDVI、GNDVI、EVI2、OSAVI、SAVI、NDRE、WDRVI)和2个温度参数(NRCT、CTD)作为模型输入变量, 对于单模态数据而言, 对产量的估算效应为植被指数 > 温度参数, 以灌浆期植被指数的RFR模型效果最好(R2=0.724, RMSE=614.72 kg hm-2, MAE=478.08 kg hm-2); 对于双模态数据融合来说, 在植被指数基础上融入冠层温度参数表现最好, 开花期RFR模型效果进一步提高(R2=0.865, RMSE=440.73 kg hm-2, MAE=374.86 kg hm-2); 在双模态数据基础上引入坡度信息进行三模态数据融合, 其产量估算效果明显优于单模态和双模态数据融合, 其中以开花期植被指数、温度参数和坡度信息融合的RFR估算效果最好(R2=0.893, RMSE=420.06 kg hm-2, MAE=352.69 kg hm-2), 模型验证效果较好(R2= 0.892, RMSE=423.55 kg hm-2, MAE=334.43 kg hm-2)。可见, 在本试验条件下通过引入地形因子, 结合随机森林回归算法将多模态数据有效融合, 可充分发挥不同遥感信息源之间互补协同作用, 有效提高了产量估算模型的精度与稳定性, 为作物生长监测及产量估算提供思路参考和方法支持。

关键词: 冬小麦, 无人机, 产量估算, 地形因子, 多模态数据

Abstract:

Crop yield estimations are important for national food security, people, and the environment. Timely and accurate estimation of crop yield at the field scale is of great significance for crop management, harvest and trade. It ultimately enables farmers to optimize inputs and economic return. We selected an irrigated wheat field in a region near Kaifeng, Henan province, for this study. The terrain in that region is undulating and spatial differences. We used a low-altitude unmanned aerial vehicle (UAV) remote sensing platform equipped with a multi-spectral camera, thermal infrared camera, and RGB camera to simultaneously obtain different remote sensing parameters during the key growth stages of wheat. Based on the extracted spectral reflectivity, thermal infrared temperature, and digital elevation information, we calculated the spatial variability of remote sensing parameters, and growth indices under different terrain characteristics. We also analyzed the correlations between vegetation indices, temperature parameters and wheat yield. By means of four machine learning methods, including multiple linear regression method (MLR), partial least squares regression method (PLSR), support vector machine regression method (SVR), and random forest regression method (RFR), we compared the yield estimation capability of single-modal data versus multimodal data fusion frameworks. The results showed that slope was an important factor affecting crop growth and yield. We observed significant differences in remote sensing parameters under different slope grades. Soil water content, water content of plants, and above-ground biomass at the three growth stages were significantly correlated with slope. Most of the vegetation indices and temperature parameters of three growth stages were significantly correlated with yield as well. Based on the strength of their correlation with yield, seven vegetation indices (NDVI, GNDVI, EVI2, OSAVI, SAVI, NDRE, and WDRVI) and two temperature parameters (NRCT, CTD) were selected as the final input variables for the model. For the single-modal data framework, the model constructed with the vegetation indices was better than the yield model constructed with the temperature parameters, and the highest accuracy was obtained with a RFR model based on vegetation indices at filling stage (R2 = 0.724, RMSE = 614.72 kg hm-2, MAE = 478.08 kg hm-2). For the double modal data fusion approach, the highest accuracy resulted at flowering stage, using the temperature parameters combined with the vegetation indices of RFR model (R2=0.865, RMSE=440.73 kg hm-2, MAE=374.86 kg hm-2). Even higher accuracies were obtained, using the multimodal data fusion approach with a RFR model based on vegetation indices, temperature parameters and slope information at flowering stage (R2 = 0.893, RMSE = 420.06 kg hm-2, MAE = 352.69 kg hm-2), and the highest validation model (R2 = 0.892, RMSE = 423.55 kg hm-2, MAE = 334.43 kg hm-2) for fusion of the flowering stage. The results revealed that by using a multimodal data fusion framework of terrain factors combined with RFR, we can fully exploit the complementary and synergistic roles of different remote sensing information sources. This effectively improves the accuracy and stability of the yield estimation model, and provides a reference and support for crop growth monitoring and yield estimation.

Key words: winter wheat, unmanned aerial vehicle (UAV), yield estimation, terrain factor, multimodal data

图1

研究区位置及样点分布"

图2

研究区地形特征"

图3

开花期冠层温度分布图及实测和预测的冠层温度"

表1

本文采用的光谱指数和温度参数"

参数
Index
公式
Formula
参考文献
Reference
归一化植被指数Normalized difference vegetation index (NDVI) $\frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{red}}} \right)}{\left( {{R}_{\text{nir}}}+{{R}_{\text{red}}} \right)}$ [25]
归一化绿度植被指数Green normalized difference vegetation index (GNDVI) $\frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{green}}} \right)}{\left( {{R}_{\text{nir}}}+{{R}_{\text{green}}} \right)}$ [26]
双波段增强植被指数Two-band enhanced vegetation index (EVI2) $2.5\times \frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{red}}} \right)}{\left( {{R}_{\text{nir}}}+2.4\times {{R}_{\text{red}}}+1 \right)}$ [27]
优化土壤调整植被指数Optimized soil adjusted vegetation index (OSAVI) $1.16\times \frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{red}}} \right)}{\left( {{R}_{\text{nir}}}+{{R}_{\text{red}}}+0.16 \right)}$ [28]
土壤调整植被指数Soil adjusted vegetation index (SAVI) $1.5\times \frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{red}}} \right)}{\left( {{R}_{\text{nir}}}+{{R}_{\text{red}}}+0.5 \right)}$ [29]
红边归一化植被指数Red edge normalized index (NDRE) $\frac{\left( {{R}_{\text{nir}}}-{{R}_{\text{re}}} \right)}{\left( {{R}_{\text{nir}}}+{{R}_{\text{re}}} \right)}$ [30]
宽动态植被指数Wide dynamic range vegetation index (WDRVI) $\frac{\left( 0.1\times {{R}_{\text{nir}}}-{{R}_{\text{red}}} \right)}{\left( 0.1\times {{R}_{\text{nir}}}+{{R}_{\text{red}}} \right)}$ [31]
改善简单比率植被指数Modified simple ratio index (MSR) $\frac{\left( \frac{{{R}_{\text{nir}}}}{{{R}_{\text{red}}}-1} \right)}{\left( \sqrt{\frac{{{R}_{\text{nir}}}}{{{R}_{\text{red}}}}}+1 \right)}$ [32]
改良叶绿素吸收率指数
Modified chlorophyll absorption ratio index (MCARI)
$\frac{\left[ {{R}_{\text{re}}}-{{R}_{\text{red}}}-0.2\left( {{R}_{\text{re}}}-{{R}_{\text{green}}} \right) \right]}{\left( \frac{{{R}_{\text{re}}}}{{{R}_{\text{red}}}} \right)}$ [33]
参数
Index
公式
Formulas
参考文献
References
红波段比值植被指数Red ratio vegetation index (RVIred) $\frac{{{R}_{\text{nir}}}}{{{R}_{\text{red}}}}$ [34]
标准化相对冠层温度Normalized relative canopy temperature (NRCT) $\frac{\left( {{T}_{c}}-{{T}_{\text{min}}} \right)}{\left( {{T}_{\max }}+{{T}_{\text{min}}} \right)}$ [35]
冠-气温差Canopy temperature depression (CTD) ${{T}_{c}}-{{T}_{\alpha }}$ [36]

表2

不同坡度等级下遥感影像参数的描述性统计"

生育期
Growth stage
坡度
Slope (°)
GNDVI CT (℃)
最大值
Max.
最小值
Min.
均值
Mean
标准差
SD
最大值
Max.
最小值
Min.
均值
Mean
标准差
SD
孕穗期
Booting stage
2-4 0.805 0.731 0.778 0.051 26.62 25.46 26.24 0.44
4-6 0.723 0.602 0.637 0.049 28.24 27.56 27.42 0.34
6-8 0.671 0.526 0.594 0.087 28.51 27.84 28.26 0.61
开花期
Flowering stage
2-4 0.837 0.758 0.809 0.047 28.64 27.14 27.84 0.46
4-6 0.772 0.652 0.725 0.054 29.85 28.37 29.02 0.51
6-8 0.713 0.608 0.634 0.069 30.64 29.02 29.79 0.58
灌浆期
Filling stage
2-4 0.796 0.719 0.747 0.053 31.05 29.46 30.54 0.52
4-6 0.705 0.564 0.598 0.064 31.46 29.85 31.12 0.56
6-8 0.669 0.518 0.573 0.081 33.97 30.31 32.85 0.78

表3

不同生育期农学指标与坡度相关系数"

生长参数
Growth parameter
孕穗期
Booting stage
开花期
Flowering stage
灌浆期
Filling stage
土壤含水量 Soil moisture content (%) -0.605** -0.673** -0.731**
植株含水量 Plant water content (%) -0.450** -0.503** -0.521**
地上部生物量 Above-ground biomass (kg hm-2) -0.332* -0.406** -0.434**

表4

不同生育期植被指数和温度参数与产量相关系数"

指数
Indices
孕穗期
Booting stage
开花期
Flowering stage
灌浆期
Filling stage
NDVI 0.587** 0.718** 0.799**
GNDVI 0.616** 0.756** 0.821**
EVI2 0.663** 0.732** 0.806**
OSAVI 0.653** 0.741** 0.820**
SAVI 0.668** 0.735** 0.809**
NDRE 0.666** 0.770** 0.743**
WDRVI 0.567** 0.705** 0.796**
MSR 0.390** 0.689** 0.688**
MCARI 0.475** 0.614** 0.714**
RVI 0.280* 0.664** 0.752**
NRCT ‒0.487** ‒0.758** ‒0.590**
CTD 0.443** 0.669** 0.467**

表5

基于单模态数据的小麦产量估算精度"

参数
Index
回归模型
Regression model
孕穗期Booting stage 开花期Flowering stage 灌浆期Filling stage
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
VI MLR 0.496 760.76 648.32 0.663 659.23 567.27 0.672 638.43 502.93
PLSR 0.508 765.69 635.14 0.626 662.28 574.84 0.648 644.11 523.51
SVR 0.521 755.52 597.46 0.673 648.37 532.46 0.680 618.41 486.64
RFR 0.564 700.62 576.70 0.711 645.85 527.65 0.724 614.72 478.08
TH MLR 0.340 902.84 728.61 0.637 676.12 608.38 0.391 859.12 654.23
PLSR 0.349 883.15 694.48 0.609 680.17 615.89 0.368 880.24 676.27
SVR 0.361 876.73 671.52 0.659 668.87 581.64 0.463 807.35 594.65
RFR 0.417 839.74 650.37 0.707 642.19 530.89 0.540 788.59 563.06

图4

基于单模态冬小麦产量实测值与预测值间关系 a~c是基于冬小麦孕穗期、开花期、灌浆期植被指数建立的最佳RFR模型验证产量预测值与实测值间的散点图; d~f是基于冬小麦孕穗期、开花期、灌浆期温度参数建立的最佳RFR模型验证产量预测值与实测值间的散点图。"

表6

基于多模态数据融合的小麦产量估算"

参数
Index
回归模型
Regression model
孕穗期Booting stage 开花期Flowering stage 灌浆期Filling stage
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
R2 RMSE
(kg hm-2)
MAE
(kg hm-2)
VI+TF MLR 0.544 766.67 642.58 0.677 615.09 546.26 0.727 625.12 497.92
PLSR 0.513 722.35 615.79 0.635 654.25 559.85 0.711 650.38 513.67
SVR 0.604 693.45 567.62 0.729 598.46 514.24 0.769 584.27 481.37
RFR 0.633 671.14 541.46 0.746 576.69 495.46 0.786 561.47 459.64
VI+TH MLR 0.644 743.29 634.84 0.801 521.62 439.67 0.780 596.92 482.47
PLSR 0.609 749.22 629.75 0.790 542.45 456.87 0.752 606.89 489.67
SVR 0.663 709.49 574.57 0.822 495.88 423.15 0.795 573.61 474.35
RFR 0.699 643.36 535.74 0.865 440.73 374.86 0.831 480.73 401.91
TF+TH MLR 0.371 863.76 705.27 0.652 671.64 571.29 0.417 816.05 639.37
PLSR 0.403 854.87 685.23 0.622 694.52 586.13 0.432 832.48 656.74
SVR 0.495 838.46 664.67 0.708 658.24 546.82 0.562 727.13 587.68
RFR 0.561 797.06 642.13 0.727 640.49 518.79 0.594 697.58 559.98
VI+TF+TH MLR 0.660 656.07 527.41 0.817 460.94 375.15 0.787 507.92 447.26
PLSR 0.654 637.50 514.79 0.805 505.66 412.35 0.753 585.85 479.84
SVR 0.702 600.37 487.37 0.824 451.26 379.65 0.813 476.67 421.31
RFR 0.729 611.19 470.94 0.893 420.06 352.69 0.856 457.56 380.71

图5

基于多模态冬小麦产量实测值与预测值间关系 a~c是基于冬小麦孕穗期、开花期、灌浆期植被指数结合温度参数建立的最佳RFR模型验证产量预测值与实测值间的散点图; d~f是基于冬小麦孕穗期、开花期、灌浆期植被指数、温度参数与坡度建立的最佳RFR模型验证产量预测值与实测值间的散点图。"

[1] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric Forest Meteorol, 2015, 200: 135-143.
doi: 10.1016/j.agrformet.2014.09.011
[2] Mueller N, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490: 254-257.
doi: 10.1038/nature11420
[3] 杨绚, 汤绪, 陈葆德, 田展, 赵思健. 利用CMIP5多模式集合模拟气候变化对中国小麦产量的影响. 中国农业科学, 2014, 47: 3009-3024.
Yang X, Tang X, Chen B D, Tian Z, Zhao S J. Impacts of climate change on wheat yield in China simulated by CMIP5 multi-model ensemble projections. Sci Agric Sin, 2014, 47: 3009-3024. (in Chinese with English abstract)
[4] Reshef I B, Vermote E, Lindeman M, Justice C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens Environ, 2010, 114: 1312-1323.
doi: 10.1016/j.rse.2010.01.010
[5] Zaman-Allah M, Vergara O, Araus J L, Tarekegne A, Magorokosho C, Zarco-Tejada P J, Hornero A, Albà A H, Das B, Craufurd P, Olsen M, Prasanna B M, Cairns J. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods, 2015, 11: 35.
doi: 10.1186/s13007-015-0078-2 pmid: 26106438
[6] Wang L G, Tian Y G, Yao X, Zhu Y, Cao W X. Predicting grain yield and protein content in wheat by fusing multisensory and multi-temporal remote-sensing images. Field Crops Res, 2014, 164: 178-188.
doi: 10.1016/j.fcr.2014.05.001
[7] 纪景纯, 赵原, 邹晓娟, 宣可凡, 王伟鹏, 刘建立, 李晓鹏. 无人机遥感在农田信息监测中的应用进展. 土壤学报, 2019, 56: 773-784.
Ji J C, Zhao Y, Zou X J, Xuan K F, Wang W P, Liu J L, Li X P. Advancement in application of UAV remote sensing to monitoring of farmlands. Acta Pedol Sin, 2019, 56: 773-784. (in Chinese with English abstract)
[8] 胡健波, 张健. 无人机遥感在生态学中的应用进展. 生态学报, 2018, 38: 20-30.
Hu J B, Zhang J. Unmanned aerial vehicle remote sensing in ecology: advances and prospects. Acta Ecol Sin, 2018, 38: 20-30. (in Chinese with English abstract)
[9] 孙刚, 黄文江, 陈鹏飞, 高帅, 王秀. 轻小型无人机多光谱遥感技术应用进展. 农业机械学报, 2018, 49(3): 1-17.
Sun G, Huang W J, Chen P F, Gao S, Wang X. Advances in UAV-based multispectral remote sensing applications. Trans CSAM, 2018, 49(3): 1-17. (in Chinese with English abstract)
[10] 裴浩杰, 冯海宽, 李长春, 金秀良, 李振海, 杨贵军. 基于综合指标的冬小麦长势无人机遥感监测. 农业工程学报, 2017, 33(20): 74-82.
Pei H J, Feng H K, Li C C, Jin X L, Li Z H, Yang Z J. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. Trans CSAE, 2017, 33(20): 74-82. (in Chinese with English abstract)
[11] Navarro A, Young M, Allan B, Carnell P, Macreadie P, Ierodiaconou D. The application of unmanned aerial vehicles (UAVs) to estimate aboveground biomass of mangrove ecosystems. Remote Sens Environ, 2020, 242: 111747.
doi: 10.1016/j.rse.2020.111747
[12] Zhang C H, Kovacs J M. The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric, 2012, 13: 693-712.
doi: 10.1007/s11119-012-9274-5
[13] 朱婉雪, 李仕冀, 张旭博, 李洋, 孙志刚. 基于无人机遥感植被指数优选的田块尺度冬小麦估产. 农业工程学报, 2018, 34(11): 78-86.
Zhu W X, Li S J, Zhang X B, Li Y, Sun Z G. Estimation of winter wheat yield using optimal vegetation indices from unmanned aerial vehicle remote sensing. Trans CSAE, 2018, 34(11): 78-86. (in Chinese with English abstract)
[14] 程千, 徐洪刚, 曹引波, 段福义, 陈震. 基于无人机多时相植被指数的冬小麦产量估测. 农业机械学报, 2021, 52(3): 160-167.
Cheng Q, Xu H G, Cao Y B, Duan F Y, Chen Z. Grain yield prediction of winter wheat using multi-temporal UAV based multispectral vegetation index. Trans CSAM, 2021, 52(3): 160-167. (in Chinese with English abstract)
[15] 刘畅, 杨贵军, 李振海, 汤伏全, 王建雯, 张春兰, 张丽妍. 融合无人机光谱信息与纹理信息的冬小麦生物量估测. 中国农业科学, 2018, 51: 3060-3073.
Liu C, Yang G J, Li Z H, Tang F Q, Wang J W, Zhang C L, Zhang L Y. Biomass estimation in winter wheat by UAV spectral information and texture information fusion. Sci Agric Sin, 2018, 51: 3060-3073. (in Chinese with English abstract)
[16] Fu Y Y, Yang G J, Song X Y, Li Z H, Xu X G, Feng H K, Zhao C J. Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis. Remote Sens, 2021, 13: 581.
doi: 10.3390/rs13040581
[17] Elsayed S, Elhoweity M, Ibrahim H H, Dewir Y H, Migdadi H M, Schmidhalter U. Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agric Water Manage, 2017, 189: 98-110.
doi: 10.1016/j.agwat.2017.05.001
[18] Rischbeck P, Elsayed S, Mistele B, Barmeier G, Heil K, Schmidhalter U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur J Agron, 2016, 78: 44-59.
doi: 10.1016/j.eja.2016.04.013
[19] Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi F B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ, 2020, 237: 111599.
doi: 10.1016/j.rse.2019.111599
[20] Riihimäki H, Heiskanen J, Luoto M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int J Appl Earth Obs, 2017, 56: 44-53.
[21] Nie X D, Guo W, Huang B, Zhuo M N, Li D Q, Li Z W, Yuan Z J. Effects of soil properties, topography and landform on the understory biomass of a pine forest in a subtropical hilly region. Catena (Giessen), 2019, 176: 104-111.
doi: 10.1016/j.catena.2019.01.007
[22] Yang Q Y, Jiang Z C, Li W J, Li H. Prediction of soil organic matter in peak-cluster depression region using kriging and terrain indices. Soil Tillage Res, 2014, 144: 126-132.
doi: 10.1016/j.still.2014.07.011
[23] 张新乐, 徐梦园, 刘焕军, 孟令华, 邱政超, 潘越, 谢雅慧. 引入地形因子的黑土区大豆干生物量遥感反演模型及验证. 农业工程学报, 2017, 33(16): 168-173.
Zhang X L, Xu M Y, Liu H J, Meng L H, Qiu Z C, Pan Y, Xie Y H. Remote sensing inversion models and validation of aboveground biomass in soybean with introduction of terrain factors in black soil area. Trans CSAE, 2017, 33(16): 168-173. (in Chinese with English abstract)
[24] 侯淑涛, 崔杨, 孟令华, 武丹茜, 钱蕾, 鲍依临, 叶强, 刘焕军. 地形对漫川漫岗黑土区大豆产量的影响. 农业工程学报, 2020, 36(8): 88-95.
Hou S T, Cui Y, Meng L H, Wu D Q, Qian L, Bao Y L, Ye Q, Liu H J. Effects of terrain on soybean yields in rolling hilly black soil areas. Trans CSAE, 2020, 36(8): 88-95. (in Chinese with English abstract)
[25] Qi J, Kerr Y, Moran M, Weltz M, Huete A, Sorooshian S, Bryant R. Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region. Remote Sens Environ, 2000, 73: 18-30.
doi: 10.1016/S0034-4257(99)00113-3
[26] Anatoly A G, Mark N M. Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res, 1998, 22: 689-692.
doi: 10.1016/S0273-1177(97)01133-2
[27] Jiang Z, Huete A R, Didan K, Miurab T. Development of a two-band enhanced vegetation index without a blue band. Remote Sense Environ, 2008, 112: 3833-3845.
doi: 10.1016/j.rse.2008.06.006
[28] Geneviève R, Michael S, Frédéric B, Optimization of soil-adjusted vegetation indices. Remote Sense Environ, 1996, 55: 95-107.
doi: 10.1016/0034-4257(95)00186-7
[29] Huete A R. Soil-adjust vegetation index (SAVI). Remote Sense Environ, 1988, 25: 295-309.
doi: 10.1016/0034-4257(88)90106-X
[30] Githlson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994, 143: 286-292.
doi: 10.1016/S0176-1617(11)81633-0
[31] Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol, 2004, 161: 165-173.
[32] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 2014, 22: 229-242.
doi: 10.1080/07038992.1996.10855178
[33] Daughtry C S T, Walthall C L, Kim M S, Colstoun E B D, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sense Environ, 2000, 74: 229-239.
doi: 10.1016/S0034-4257(00)00113-9
[34] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sense Environ, 1979, 8: 127-150.
doi: 10.1016/0034-4257(79)90013-0
[35] Elsayed S, Rischbeck P, Schmidhalter U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crops Res, 2015, 177: 148-160.
doi: 10.1016/j.fcr.2015.03.010
[36] Purushothaman R, Thudi M, Krishnamurthy L, Upadhyayaa H D, Kashiwagib J, Gowdaa C L L, Varshney R K. Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res, 2015, 174: 1-11.
doi: 10.1016/j.fcr.2015.01.007
[37] Valtera M, Šamonil, Svoboda M, Janda P. Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant Soil, 2015, 392: 57-69.
doi: 10.1007/s11104-015-2442-4
[38] 马雨阳, 官海翔, 杨昊轩, 邵帅, 邵逸群, 刘焕军. 利用地形、 土壤和作物信息辅助提高东北漫岗地数字高程模型精度的新方法. 中国农业科学, 2021, 54: 1715-1727.
Ma Y Y, Guan H X, Yang H X, Shao S, Shao Y Q, Liu H J. A new method to improve the accuracy of digital elevation model in northeast China by using terrain, soil and crop Information. Sci Agric Sin, 2021, 54: 1715-1727 (in Chinese with English abstract).
[39] 朱高龙, 柳艺博, 居为民, 陈镜明. 4种常用植被指数的地形效应评估. 遥感学报, 2013, 17: 210-234.
Zhu G L, Liu Y B, Ju W M, Chen J M. Evaluation of topographic effects on four commonly used vegetation indices. J Remote Sens, 2013, 17: 210-234. (in Chinese with English abstract)
[40] 刘海丰, 薛达元, 桑卫国. 地形因子对暖温带森林群落物种丰富度-地上生物量关系的影响. 生态环境学报, 2012, 21: 1403-1407.
Liu H F, Xue D Y, Sang W G. Effect of topographic factors on the relationship between species richness and aboveground biomass in a warm temperate forest. Ecol Environ Sci, 2012, 21: 1403-1407. (in Chinese with English abstract)
[41] Takyu M, Aiba S I, Kitayama K. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on mount Kinabalu, Borneo. Oecologia, 2003, 134: 397-404.
doi: 10.1007/s00442-002-1115-1
[42] 杨仕曦, 吕广斌, 黄云, 向华辉, 王正银. 九龙坡花椒种植区地形、土壤肥力与花椒产量的关系. 中国生态农业学报, 2019, 27: 1823-1832.
Yang S X, Lyu G B, Huang Y, Xiang H H, Wang Z Y. Relationships of Zanthoxylum bungeanum yield with topography and soil fertility in Jiulongpo area. Chin J Eco-Agric, 2019, 27: 1823-1832. (in Chinese with English abstract)
[43] Kross A, Mcnairn H, Lapen D, Sunohara M, Champagne C. Assessment of rapid eye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int J Appl Earth Obs, 2015, 34: 235-248.
[44] Guo J X, Tian G L, Zhou Y, Wang M, Ling N, Shen Q R, Guo S W. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Res, 2016, 196: 463-472.
doi: 10.1016/j.fcr.2016.08.008
[45] Hou A, Chen P, Alloatti J, Li D, Mozzoni L, Zhang B, Shi A. Genetic variability of seed sugar content in worldwide soybean germplasm ppubs. Crop Sci, 2009, 49: 903-912.
doi: 10.2135/cropsci2008.05.0256
[46] Virlet N, Lebourgeois V, Martinez S, Costes E, Labbe S, Regnard J L. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints. J Exp Bot, 2014, 65: 5429-5442.
doi: 10.1093/jxb/eru309
[47] Du W Y., Zhang L D, Hu Z F, Shamaila Z, Zeng A J, Song J L, Liu Y J, Wolfram S, Joachim M, He X K. Utilization of thermal infrared image for inversion of winter wheat yield and biomass. Spectr Spectr Anal, 2011, 31: 1476-1480.
[48] González F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot, 2011, 62: 4889-4901.
doi: 10.1093/jxb/err182
[49] Laurent A, Loyce C, Makowski D, Pelzer E. Using site-specific data to estimate energy crop yield. Environ Modell Softw, 2015, 74: 104-113.
doi: 10.1016/j.envsoft.2015.09.008
[50] Yue J B, Yang G J, Li C C, Li Z H, Wang Y J, Feng H K, Xu B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens, 2017, 9: 708.
doi: 10.3390/rs9070708
[51] 陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 2019, 35(19): 107-116.
Tao H L, Xu L J, Feng H K, Yang G J, Yang X D, Miao M K, Dai Y. Estimation of plant height and biomass of winter wheat based on UAV digital image. Trans CSAE, 2019, 35(19): 107-116. (in Chinese with English abstract)
[52] 潘治利, 祁萌, 魏春阳, 李锋, 张仕祥, 王建伟, 过伟民, 艾志录. 基于图像处理和支持向量机的初烤烟叶颜色特征区域分类. 作物学报, 2012, 38: 374-379.
Pan Z L, Qi M, Wei C Y, Li F, Zhang S X, Wang J W, Guo W M, Ai Z L. Color region classification of flue-cured tobacco leaves based on the image. Acta Agron Sin, 2012, 38: 374-379. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00374
[53] Xu J X, Ma J, Tang Y N, Wu W X, Shao J H, Wu W B, Wei S Y, Liu Y F, Wang Y C, Guo H Q. Estimation of sugarcane yield using a machine learning approach based on UAV-LiDAR data. Remote Sens, 2020, 12: 2823.
doi: 10.3390/rs12172823
[54] Nawar S, Buddenbaum H, Hill J, Kozak J. Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sens, 2014, 6: 10813-10834.
doi: 10.3390/rs61110813
[55] Liu H Z, Shi T Z, Chen Y Y, Wang J J, Fei T, Wu G F. Improving spectral estimation of soil organic carbon content through semi-supervised regression. Remote Sens, 2017, 9: 29.
doi: 10.3390/rs9010029
[56] Aghighi H, Azadbakht M, Ashourloo D, Shahrabi H S, Radiom S.Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI. IEEE J-Selec Topic Appl Earth Observ Remote Sens, 2018, 11: 4563-4577.
[57] 杨北萍, 陈圣波, 于海洋, 安秦. 基于随机森林回归方法的水稻产量遥感估算. 中国农业大学报, 2020, 25(6): 26-34.
Yang B P, Chen S B, Yu H Y, An Q. Remote sensing estimation of rice yield based on random forest regression method. J China Agric Univ, 2020, 25(6): 26-34 (in Chinese with English abstract).
[58] Jeong J H, Resop J P, Mueller N D, Fleisher D H, Yun K, Butler E E, Timlin D J, Shim K M, Gerber J S, Reddy V R, Kim S H. Random forests for global and regional crop yield predictions. PLoS One, 2016, 11: e0156571.
doi: 10.1371/journal.pone.0156571
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[4] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[5] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[7] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[8] 陈鹏飞,徐新刚. 无人机影像拼接软件在农业中应用的比较研究[J]. 作物学报, 2020, 46(7): 1112-1119.
[9] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[13] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[14] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[15] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .