欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 119-128.doi: 10.3724/SP.J.1006.2023.12089

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用高密度Bin遗传图谱定位水稻抽穗期QTL

赵凌(), 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东()   

  1. 江苏省农业科学院粮食作物研究所 / 国家水稻改良中心南京分中心 / 国家耐盐碱水稻技术创新中心华东中心 / 江苏省优质水稻工程技术研究中心, 江苏南京 210014
  • 收稿日期:2021-12-28 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-13
  • 通讯作者: 张亚东
  • 作者简介:E-mail: zhaoling@jaas.ac.cn
  • 基金资助:
    江苏省重点研发计划项目(BE2019375)

Mapping of QTLs for heading date of rice with high-density bin genetic map

ZHAO Ling(), LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong()   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of China National Center for Rice Improvement / East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice / Jiangsu High Quality Rice Research & Development Center, Nanjing 210014, Jiangsu, China
  • Received:2021-12-28 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-13
  • Contact: ZHANG Ya-Dong
  • Supported by:
    Jiangsu Science and Technology Development Program(BE2019375)

摘要:

挖掘新的控制水稻抽穗期相关位点和候选基因, 对抽穗期的遗传机制研究和品种改良具有重要的意义。利用抽穗期存在明显差异的粳稻TD70和籼稻Kasalath杂交衍生的包含186个家系的重组自交系群体, 构建了基于深度重测序的高密度Bin遗传图谱, 图谱共包含12,328个Bin标记。RIL群体及亲本2018年和2021年正季种植于江苏省南京市江苏省农业科学院。以家系从播种到抽穗所经历的天数作为抽穗期表型值, 使用IciMapping软件3.4版的完备区间作图法, 对控制水稻抽穗期的QTL进行鉴定。2年共检测到15个抽穗期的QTL, 分布在3号、6号、7号、8号、10号和12号染色体上, LOD值为2.58~10.68, 其中7个QTL和已知抽穗期QTL的位置存在重叠或者部分重叠。共有4个QTL在2年均检测到, 表现出较强的稳定性。对2年重复鉴定到的4个QTL区间进行基因功能注释和亲本间序列分析, 共发现7个注释有功能, 且在2个亲本间编码区存在非同义突变的基因。根据候选基因SNP的类型对RIL群体家系进行基因等位型分类和效应分析, 发现4个基因其不同等位型的RIL家系在抽穗期上存在显著或者极显著差异, 推测可能为候选基因, 可用于后续水稻抽穗期的分子机制研究。

关键词: 水稻, 重组自交系, 高密度Bin图谱, 抽穗期, QTL

Abstract:

Identification of new loci and genes related to heading date is very important for the genetic mechanism research and molecular improvement in rice. A recombinant inbred lines (RILs) was developed by crossing the japonica rice TD70 and the indica rice Kasalath with obvious difference in heading date. A high-density genetic linkage map with 12,328 recombination Bin markers was constructed based on the re-sequencing data of parents and RILs. The RILs and two parents were planted at the Jiangsu Academy of Agricultural Sciences, in Nanjing in 2018 and 2021. QTLs that controlled the heading date were analyzed by IciMappingv3.4 software with inclusive compound interval mapping method. 15 QTLs related to heading date of rice were detected, distributed on chromosome 3, 6, 7, 8, 10, and 12 in two years. The phenotype variation explained (PVE) and LOD value of single QTL ranged from 3.29%-14.73% and 2.58-10.68, respectively. Among them, seven QTLs were found to locate in the same interval or adjacent to previously QTLs, and four QTLs were detected in two years indicating their genetic stability. According to the annotation and sequences analysis of genes located in the region of repeatable QTLs, we found that seven annotated genes had non-synonymous mutations in the coding regions between TD70 and Kasalath. Based on the mutations in the coding regions, the haplotypes of seven genes were identified in RIL population. The heading date of RILs had significant difference between the RILs with different haplotype of four genes, indicating that they might be the candidate genes for heading date. These results could be useful for subsequent functional studies and molecular marker assisted breeding of heading date.

Key words: rice (Oryza sativa L.), recombinant inbred lines, high-density bin map, heading date, QTLs

图1

重测序RIL群体抽穗期分布"

表1

亲本与重组自交系群体的抽穗天数"

年份Year 亲本Parents (d) 重组自交系RIL population
TD70 Kasalath 平均值Average (d) 变异范围
Range
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
2018 106 84 98.6 85-117 5.23 -0.73 0.28
2021 99 89 96.5 84-111 7.55 0.08 0.14

表2

检测到控制抽穗期的QTL"

年份Year QTL 染色体Chr. 标记区间
Marker interval
置信区间
Confidence interval (Mb)
LOD 贡献率
PVE (%)
加性效应
Additive effect
2018 qHD3 3 RBN2916-RBN2917 21.75-21.81 2.58 3.29 1.41
qHD6.1 6 RBN5492-RBN5493 1.80-1.85 10.68 14.73 2.98
qHD6.2 6 RBN5834-RBN5835 10.93-11.07 3.15 4.65 -2.58
qHD7.1* 7 RBN7031-RBN7032 14.50-14.54 6.02 11.77 2.66
qHD7.2 7 RBN7535-RBN7536 28.65-28.71 3.73 4.77 -1.70
qHD8* 8 RBN7647-RBN7648 1.73-1.82 3.11 3.97 1.56
qHD10.1* 10 RBN9497-RBN9498 3.15-3.20 4.89 6.30 2.40
qHD10.2* 10 RBN9520-RBN9521 3.61-3.71 6.01 10.19 2.36
2021 qHD7.1* 7 RBN7031-RBN7032 14.50-14.54 8.21 12.58 1.81
qHD7.3 7 RBN6705-RBN6706 4.47-4.52 7.84 11.80 1.74
qHD7.4 7 RBN7524-RBN7525 28.35-28.37 6.27 9.66 -1.58
qHD8* 8 RBN7647-RBN7648 1.73-1.82 3.15 3.92 1.01
qHD10.1* 10 RBN9497-RBN9498 3.15-3.20 4.95 6.52 1.32
qHD10.2* 10 RBN9520-RBN9521 3.61-3.71 4.06 6.24 1.53
qHD12 12 RBN12280-RBN12281 26.21-26.27 3.06 4.47 1.07

图2

检测到抽穗期QTL的染色体分布图"

表3

重复检测到QTL区间内基因的注释"

QTL 染色体
Chr.
物理图谱区间Interval (Mb) 基因
Gene name
基因功能注释
Gene annotation
qHD7.1 7 14.50-14.54 Os07g0434500 SNF2家族蛋白 Snf2 family protein
Os07g0434700* 甲硫氨酸氨基肽酶家族成员 Methionine aminopeptidase family protein
Os07g0435100 26S蛋白酶体非ATP酶调节亚基8
26S proteasome non-ATPase regulatory subunit 8
Os07g0435300 光系统I反应中心亚基IV A, 叶绿体前体
Photosystem I reaction center subunit IV A, chloroplast precursor
Os07g0435400 WD结构域, G-β重复结构域蛋白
WD domain, G-beta repeat domain containing protein
qHD8 8 1.73-1.82 Os08g0130900* 半乳糖基转移酶家族 Galactosyltransferase family
Os08g0131000 五肽 Pentatricopeptide
Os08g0131100* 细胞色素P450羟化酶 Cytochrome P450 hydroxylase
Os08g0131200 蛋白酶抑制剂, 种子储存, LTP家族蛋白前体
Protease inhibitor, seed storage, LTP family protein precursor
Os08g0131300* 3-磷酸甘油酰基转移酶 Glycerol-3-phosphate acyltransferase
qHD10.1 10 3.15-3.20 Os10g0152000* OsWAK类受体蛋白激酶 OsWAK receptor-like protein kinase
qHD10.2 10 3.61-3.71 Os10g0157200 丝裂原活化蛋白激酶15 Mitogen-activated protein kinase 15
Os10g0157400* 钙依赖性蛋白激酶12 Calcium-dependent protein kinase 12
Os10g0158400* 查尔酮合酶 Chalcone synthase

图 3

TD70与Kasalath之间候选基因的结构和非同义突变 黑色框: 外显子; 灰色部分: 编码序列; 红色箭头: 错义突变; 蓝色箭头: 移码突变; 黑色箭头: 缺失。"

图4

候选基因不同等位型对RIL群体抽穗期的影响 SNP位点核苷酸为TD70型的命名为HapA, 为Kasalath型命名为HapB。"

表4

本研究定位的QTL和已知抽穗期相关位点和基因的位置比较"

QTL 本研究This study 已发表的相关位点/基因 Known QTLs or genes
染色体Chr. 物理位置
Position (Mb)
定位群体或已克隆基因
Populations or known gene
物理位置
Position (Mb)
参考文献
Reference
qHD3 3 21.75-21.81 Caiapo/O. rufipogon BC2F2 19.41-22.34 29
qHD6.1 6 1.80-1.85 Nipponbare/Kasalath BC3F2 NIL 1.64-3.08 30
qHD6.2 6 10.93-11.07 Nipponbare/Kasalath BC3F2 NIL 6.82-11.68 30
V20A/IRGC 105491 BC 2 10.05-27.25 31
qHD7.1 7 14.50-14.54 Zhenshan 97/Ming 63 F2:3 7.23-16.87 32
qHD7.3 7 4.47-4.52 IR64/Azucena DH 4.57-6.78 33
Sasanishiki/Habataki BCIL 4.57-9.10 34
qHD7.4 7 28.35-28.37 IR64/Azucena DH 28.41-29.46 30
Gui630/Taiwanjing DH 27.78-29.26 35
OsCOL13 28.18 16, 36
qHD12 12 26.21-26.27 IR64/Azucena DH 24.85-27.49 30
Lemont/Teqing RIL 26.11-26.99 37, 38
[1] 郭梁, 张振华, 庄杰云. 水稻抽穗期QTL及其与产量性状遗传控制的关系. 中国水稻科学, 2012, 26: 235-245.
Guo L, Zhang Z H, Zhuang J Y. Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa). Chin J Rice Sci, 2012, 26: 235-245. (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2012.02.014
[2] Zhang J, Zhou X, Yan W, Zhang Z Y, Lu L, Han Z M, Zhao H, Liu H Y, Song P, Hu Y, Shen G J He Q, Guo S B, Gao S P, Wang G W, Xing Y Z. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the eco-geographical adaptation and yield potential of cultivated rice. New Phytol, 2015, 208: 1056-1066.
doi: 10.1111/nph.13538 pmid: 26147403
[3] 杨德卫, 陈壬杰, 程朝平, 郑向华, 叶宁, 叶新福, 黄凤凰. 水稻抽穗期基因的鉴定与遗传调控网络研究进展. 分子植物育种, 2019, 17: 4656-4660.
Yang D W, Chen R J, Cheng C P, Zheng X H, Ye N, Ye X F, Huang F H. The progress of gene identification and genetic regulation mechanism for heading date in rice (Oryza sativa L.). Mol Plant Breed, 2019, 17: 4656-4660 (in Chinese with English abstract )
[4] 胡时开, 苏岩, 叶卫军, 郭龙彪. 水稻抽穗期遗传与分子调控机制研究进展. 中国水稻科学, 2012, 26: 373-382.
Hu S K, Su Y, Ye W J, Guo L B. Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.). Chin J Rice Sci, 2012, 26: 373-382. (in Chinese with English abstract)
[5] Wei H, Wang X L, Xu H, Wang L. Molecular basis of heading date control in rice. aBIOTECH, 2020, 1: 219-232.
doi: 10.1007/s42994-020-00019-w
[6] Yang D W, Cheng C P, Zheng X H, Ye X F, Ye N, Huang F H. Identification and fine mapping of a major QTL, qHD19, that plays pleiotropic roles in regulating the heading date in rice. Mol Breed, 2020, 40: 1-12.
doi: 10.1007/s11032-019-1080-6
[7] 蒋丹, 洪广成, 陈倩, 刘石锋, 秦小健. 水稻抽穗期分子调控研究进展. 分子植物育种, 2019, 17: 7071-7077.
Jiang D, Hong G C, Chen Q, Liu S F, Qin X J. Research progress in molecular regulation of heading date in rice (Oryza sativa). Mol Plant Breed, 2019, 17: 7071-7077. (in Chinese with English abstract)
[8] Xu Z P, Chen Z A, Wang R X, Miao Y X, Gao H L, Tang S Z, Zhang H G, Liu Q Q. Characterization and fine-mapping of qHd2-1, a minor quantitative locus that affects heading date under long-day conditions in rice (Oryza sativa L.). Mol Breed, 2020, 40: 521-532.
[9] 龚晓平, 杨正林, 赵芳明, 钟秉强, 凌英华, 何光华. 一个水稻抽穗期主基因hd(t)的遗传分析及分子定位. 作物学报, 2007, 33: 1906-1909.
Gong X P, Yang Z L, Zhao F M, Zhong B Q, Ling Y H, He G H. Genetic analysis and molecular mapping of a dominant heading period gene hd(t). Acta Agron Sin, 2007, 33: 1906-1909. (in Chinese with English abstract)
[10] 王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展. 中国水稻科学, 2021, 35: 207-224.
doi: 10.16819/j.1001-7216.2021.0514
Wang Y B, Wang Y, Liu X, Tang W B. Research progress of photoperiod regulation in rice flowering. Chin J Rice Sci, 2021, 35: 207-224. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.0514
[11] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasakia T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
doi: 10.1105/tpc.12.12.2473
[12] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604
[13] Fujino K. Days to heading, controlled by the heading date genes, hd1 and dth8, limits rice yield-related traits in Hokkaido, Japan. Breed Sci, 2020, 70: 277-282.
doi: 10.1270/jsbbs.19151
[14] Zhang B, Liu H Y, Qi F X, Zhang Z Y, Li Q P, Han Z M, Xing Y Z. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice, 2019, 12: 48.
doi: 10.1186/s12284-019-0314-x pmid: 31309345
[15] Zong W, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W B, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photo period sensitivity is controlled by cooperation and competition among Hd1, Ghd7and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946
[16] Zhou S R, Zhu S S, Cui S, Hou H G, Wu H Q, Hao B Y, Cai L, Xu Z, Liu L L, Jiang L, Wang H Y, Wan J M. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytol, 2021, 230: 943-956.
doi: 10.1111/nph.17158 pmid: 33341945
[17] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012, 28(12): 154-158.
Tang L Q, Xiao C L, Wang W P. Research and application progress of SNP markers. Chin Agric Sci Bull, 2012, 28(12): 154-158. (in Chinese with English abstract)
[18] He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073
[19] Han Z M, Hu G, Liu H, Liang F M, Yang L, Zhao H, Zhang Q H, Li Z X, Zhang Q F, Xing Y Z. Bin-based genome wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor Appl Genet, 2020, 133: 59-71.
doi: 10.1007/s00122-019-03440-y
[20] 魏祥进, 徐俊锋, 江玲, 王洪俊, 周振玲, 翟虎渠, 万建民. 我国水稻主栽品种抽穗期多样性的遗传分析. 作物学报, 2012, 38: 10-22.
Wei X J, Xu J F, Jiang L, Wang H J, Zhou Z L, Zhai H Q, Wan J M. Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin, 2012, 38: 10-22. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00010
[21] 张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位. 中国农业科学, 2021, 54: 5163-5176.
Zhang Y D, Liang W H, He L, Zhao C F, Zhu Z, Chen T, Zhao Q Y, Zhao L, Yao S, Zhou L H, Lu K, Wang C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population. Sci Agric Sin, 2021, 54: 5163-5176. (in Chinese with English abstract)
[22] Meng L, Li H H, Zhang L Y, Wang J K. QTL ICIMAPPING: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[23] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-245. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00239
[24] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[25] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL mapping for heading date in rice using high-density Bin map. Acta Agron Sin, 2018, 44: 938-946 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00938
[26] 李冬秀, 杨靖, 孙凯, 李丹丹, 杨瑰丽, 郭涛, 王慧, 陈志强. 基于高密度遗传图谱定位新的水稻抽穗期QTLs. 西北农林科技大学学报, 2020, 48(8): 44-49.
Li D X, Yang Q, Sun K, Li D D, Yang G L, Guo T, Wang H, Chen Z Q. Mapping new rice heading date QTLs based on high-density genetic map. J Northwest A&F Univ (Nat Sci Edn), 2020, 48(8): 44-49. (in Chinese with English abstract)
[27] Zhang M, Zhou Z P, Chen Y Y, Cao Y R, Deng C W, Xue P, Zhan X D, Cheng S H, Cao L Y, Zhang Y X. Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice. Plant Growth Regul, 2021, 93: 105-115.
doi: 10.1007/s10725-020-00669-2
[28] Li X K, Wu L, Wang J H, Sun J, Xia X H, Geng X, Wang X H, Xu Z J, Xu Q. Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol, 2018, 16: 102.
doi: 10.1186/s12915-018-0572-x pmid: 30227868
[29] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41-42.
doi: 10.1007/s001220051616
[30] Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101: 1021-1028.
doi: 10.1007/s001220051576
[31] Xiao J H, Li J, Grandillo S, Ahn S N, Yuan L, Tanksley S D, McCouch S R. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genet, 1998, 150: 899-909.
doi: 10.1093/genetics/150.2.899
[32] Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619-625.
pmid: 12582666
[33] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153.
pmid: 12961067
[34] Nagata K, Shimizu H, Terao T. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (Oryza sativa L.) and their effects on grain filling. Breed Sci, 2002, 52: 275-283.
doi: 10.1270/jsbbs.52.275
[35] Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J. Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001, 102: 1236-1242.
doi: 10.1007/s001220100539
[36] Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering down stream of Osphy B and upstream of Ehd1 in rice. Plant Mol Biol, 2016, 92: 209-222
doi: 10.1007/s11103-016-0506-3
[37] Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101.
pmid: 12721635
[38] Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659.
pmid: 15647921
[39] Abdirad S, Majd A, Irian S, Hadidi N, Salekdeh G. H Differential adaptation strategies to different levels of soil water deficit in two upland and lowland genotypes of rice: a physiological and metabolic approach. J Sci Food Agric, 2020, 100: 1458-1469.
doi: 10.1002/jsfa.10153
[40] Weng Q M, Wu W R, Li W M, Liu H Q, Tang D Z, Zhou Y C, Zhang Q F. Construction of an RFLP linkage map of rice using DNA probes from two different sources. J Fujian Agric Univ, 2000, 29: 129-133.
[1] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[2] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[3] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[4] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[5] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[6] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[7] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[8] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[9] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[10] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[11] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[12] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[13] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[14] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[15] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .