欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 129-139.doi: 10.3724/SP.J.1006.2023.24023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯糖转运蛋白IbSWEET15的功能研究

吴旭莉1,2(), 吴正丹1,2,4(), 晚传芳1,2, 杜叶1,2, 高艳1,2, 李賾萱1, 王志前1, 唐道彬1,2,3, 王季春1,2,3, 张凯1,2,3,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
    3南方山地农业教育部工程研究中心, 重庆 400715
    4广西壮族自治区农业科学院经济作物研究所, 广西南宁 530007
  • 收稿日期:2022-01-18 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-24
  • 通讯作者: 张凯
  • 作者简介:吴旭莉, E-mail: shirleyswu@163.com;
    吴正丹, E-mail: wudandan0905@163.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2018YFD1000705);国家重点研发计划项目(2018YFD1000700);中央高校基本科研业务费专项资金(XDJK2020B032);中央高校基本科研业务费专项资金(XDJK2021F001);重庆市技术创新与应用发展专项重点项目(cstc2021jscx-gksbX0022);西南大学种质创制专项研究项目

Functional identification of sucrose transporter protein IbSWEET15 in sweet potato

WU Xu-Li1,2(), WU Zheng-Dan1,2,4(), WAN Chuan-Fang1,2, DU Ye1,2, GAO Yan1,2, LI Ze-Xuan1, WANG Zhi-Qian1, TANG Dao-Bin1,2,3, WANG Ji-Chun1,2,3, ZHANG Kai1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    3Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    4Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
  • Received:2022-01-18 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-24
  • Contact: ZHANG Kai
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000705);National Key Research and Development Program of China(2018YFD1000700);Fundamental Research Funds for the Central Universities(XDJK2020B032);Fundamental Research Funds for the Central Universities(XDJK2021F001);Key Project of Chongqing Technology Innovation and Application Development(cstc2021jscx-gksbX0022);Germplasm Creation Research Program of Southwest University

摘要:

SWEET蛋白在植物生长发育、胁迫响应和糖代谢过程中具有重要的调控作用, 而甘薯SWEET蛋白的研究鲜有报道。开展甘薯SWEET蛋白功能研究, 揭示其在糖转运及淀粉与糖代谢中的功能, 具有重要的理论与实践意义。根据不同淀粉性状甘薯块根中差异表达的SWEET编码基因转录本, 设计引物进行RACE克隆, 获得IbSWEET15全长cDNA序列。利用在线软件对IbSWEET15进行生物信息学分析, 并构建系统发育树明确其分类。通过在本氏烟草中瞬时表达IbSWEET15-GFP融合蛋白, 明确IbSWEET15的亚细胞定位; 以酵母突变体互补试验, 验证IbSWEET15蛋白在酵母中的糖转运功能。通过实时荧光定量PCR (qRT-PCR)分析IbSWEET15在甘薯各器官中的表达特征; 构建IbSWEET15表达载体并通过蘸花法转化拟南芥野生型Col-0, 获得IbSWEET15异源表达拟南芥株系, 比较转基因株系与野生型拟南芥植株的淀粉和糖含量差异, 以明确IbSWEET15在淀粉和糖代谢过程中的功能。IbSWEET15基因开放阅读框为879 bp, 编码292个氨基酸组成的SWEET蛋白, 具有2个MtN3_slv保守结构域及7个跨膜结构域, 属于SWEET蛋白家族第III分支成员。IbSWEET15定位于质膜, 在酵母中无蔗糖和己糖转运功能, 其编码基因在甘薯侧枝中表达量最高, 主茎、叶次之, 块根中最低。IbSWEET15的拟南芥过表达株系的叶片可溶性糖含量显著下降, 而种子可溶性糖和淀粉含量均高于野生型。推测IbSWEET15可能在光合产物源-库运输过程中的韧皮部装载以及植株淀粉和糖积累方面具有重要作用。本研究为揭示IbSWEET15在甘薯淀粉和糖代谢及重要品质性状形成中的功能提供了重要信息。

关键词: 甘薯, IbSWEET15, 可溶性糖, 淀粉

Abstract:

SWEET proteins play important regulatory roles in plant growth and development, stress response and sugar metabolism, but few research has been reported on SWEET proteins in sweet potato. It is of great theoretical and practical significance to carry out functional studies on sweet potato SWEET proteins to reveal their functions in sugar transport and starch and sugar metabolism. Based on the transcripts of SWEET encoding gene differentially expressed in sweet potato storage roots with different starch-related traits, specific primers were designed and the full-length cDNA sequence of IbSWEET15 was cloned using RACE method. IbSWEET15 bioinformatics was performed using online software, and its classification was clarified by phylogenetic tree analysis. The subcellular localization of the protein encoded by IbSWEET15 gene was identified by transient expression of IbSWEET15-GFP fusion protein in Nicotiana benthamiana, while yeast mutant complementation experiments were carried out to identify the sugar transport function of IbSWEET15 in yeast. The relative expression pattern of IbSWEET15 genes in various organs of sweet potato were analyzed by qRT-PCR. IbSWEET15 expression vector was constructed and transformed into Arabidopsis wild-type Col-0 by floral dip method to obtain IbSWEET15 heterologously expressed Arabidopsis lines, and the starch and sugar contents of the transgenic plants were measured and compared with those of wild-type Arabidopsis plants, and the function of IbSWEET15 in starch and sugar metabolism was identified. IbSWEET15, with an open reading frame of 879 bp, encoded a 292 amino acid sucrose transporter protein with two MtN3_slv conserved structural domains and seven transmembrane structural domains, and was a member of clade III of the SWEET protein family. The protein encoded by IbSWEET15 localized at the plasma membrane and did not transport sucrose and hexose in yeast mutant. IbSWEET15 gene had the highest expression in sweet potato branches, followed by stems and leaves, and the lowest expression in storage roots. The leaf soluble sugar contents of the IbSWEET15 heterologously expressed Arabidopsis lines were significantly decreased, while the seed soluble sugar and starch contents were higher than wild type. We proposed that IbSWEET15 played an important role in phloem loading during the source to sink transport of photosynthetic product as well as sugar and starch accumulation. This study provides the critical information for understanding the function of IbSWEET15 in starch and sugar metabolism, and formation of important quality traits in sweet potato.

Key words: sweet potato, IbSWEET15, soluble sugar, starch

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
引物用途
Primer usage
15-5-1 TGCTCCCGAGAAAGGAAACCATGAGACC 5°-RACE特异引物5°-RACE specific primer
15-5-2 GAGTGGCGTTCTTCTTGATGAAAGC 5°-RACE巢扩引物5°-RACE nested amplification primer
15-3-1 TAGCCTTGTTGGTTGGATTTGCGTGGCT 3°-RACE特异引物3°-RACE specific primer
15-3-2 AATTGGTGCACCCTGTGGATTCA 3°-RACE巢扩引物3°-RACE nested amplification primer
C15-Fwd ATGAAAACTGAGTGTGCC 基因克隆
C15-Rev GGCATTAATAGAATTCATATATAACATGC Gene cloning
SC15-Fwd GAGCTCATGGCAATTCTAGATCTTCATCACC 亚细胞定位载体构建
SC15-Rev GGATCCGTTCTCCATCGCCGCCGG Subcellular localization vector construction
SI15-Fwd TCGACTAGTGGATCCATGGCAATTCTAGATCTTCA 酵母表达载体构建
SI15-Rev TCCAAAGCTGGATCCGTTCTCCATCGCCGCCGGCG Yeast expression vector construction
T15-Fwd CACCATGGCAATTCTAGATCTTCATCAC 植物表达载体构建
T15-Rev GTTCTCCATCGCCGCCGGCGGAG Plant expression vector construction
IbH2B-QF GTGCCGGAGACAAGAAGAAG 内参引物
IbH2B-QR CTTGCTGGAGATTCCGATGT Control primer
IbUBI-QF CTTGCTGGAGATTCCGATGT 内参引物
IbUBI-QR CTTGATCTTCTTCGGCTTGG Control primer
AtACTIN-QF ACACTGTGCCAATCTACGAGGGTT 内参引物
AtACTIN-QR ACAATTTCCCGCTCTGCTGTTGTG Control primer
IbSWEET15-QF TGGTGCACCCTGTGGATTCAGGGA qRT-PCR检测
IbSWEET15-QR TCACTTGATGGACTCAGCCGGCCA qRT-PCR detection
Fbar CGACATCCGCCGTGCCACCGA 转基因植株鉴定
Rbar GTACCGGCAGGCTGAAGTCCAGC Transgenic plant identification

图1

IbSWEET15编码蛋白分析 A: IbSWEET15蛋白保守结构域分析(红色框内代表MtN3_slv保守结构域)。VvSWEET15 (登录号为P0DKJ5.1): 葡萄(Vitis vinifera) SWEET蛋白; AtSWEET15 (登录号为Q9FY94.1): 拟南芥SWEET蛋白; OsSWEET15 (登录号为Q6K602.1): 水稻SWEET蛋白。B: 甘薯IbSWEET15、IbSWEET10蛋白和拟南芥SWEET蛋白家族的系统发育树。C: IbSWEET15蛋白跨膜结构域预测。pCAMBIA1300-GFP (D)和pCAMBIA1300-IbSWEET15-GFP (E)分别与细胞膜标记蛋白(红色荧光)共定位于质膜。标尺为20 μm或10 μm。"

图2

IbSWEET15的蔗糖(A~C)和己糖(D)转运功能鉴定 1、2、3分别表示成功转化pDR196、pDR196-StSUT1和pDR196-IbSWEET15载体的SEY2102菌株。转化的SEY2102菌株在含2%蔗糖的固体SD培养基上(A)和在液体SD培养基中的生长情况(B)及其菌体密度(OD600值) (C)。分别转化了pDR196-ScHXT5 (左), pDR196 (中), pDR196-IbSWEET15 (右)载体的EBY.VW4000菌株在含2%麦芽糖或不同己糖(葡萄糖、果糖、甘露糖、半乳糖)的固体SD培养基中的生长情况(D)。1×、20×、1、10、100、1000分别表示稀释倍数。ns表示无显著差异。***表示在0.001水平差异显著。标尺为0.5 cm。"

图3

IbSWEET15在甘薯各器官中的表达量 XS22: 徐薯22。***表示在0.001水平差异显著。"

图4

IbSWEET15在拟南芥中的异源表达及转基因植株的形态 A: 转基因拟南芥中IbSWEET15的表达量检测; B: 免疫印迹检测转基因植株中IbSWEET15蛋白表达; C: 转基因植株的表型观察。219、246、266、270分别代表转基因株系IbSWEET15-219、IbSWEET15-246、IbSWEET15-266和IbSWEET15-270。***表示在0.001水平差异显著。"

图5

IbSWEET15的异源表达改变了拟南芥淀粉和可溶性糖含量 *、**分别表示在0.05、0.01水平差异显著。219、246、270分别代表转基因株系IbSWEET15-219、IbSWEET15-246和IbSWEET15-270。"

[1] Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726
[2] Wang H L, Yang Q H, Ferdinand U, Gong X W, Qu Y, Gao W C, Ivanistau A, Feng B L, Liu M H. Isolation and characterization of starch from light yellow, orange, and purple sweet potatoes. Int J Biol Macromol, 2020, 160: 660-668.
doi: S0141-8130(20)33425-5 pmid: 32497669
[3] Montefusco A, Durante M, Grassi S, Piro G, Dalessandro G, Lenucci M S. Assessment of sweet potato [Ipomoea batatas (L.) Lam] for bioethanol production in southern Italy. Plant Biosyst, 2014, 148: 1117-1126.
doi: 10.1080/11263504.2014.965799
[4] Zhang K, Wu Z D, Tang D B, Luo K, Lu H X, Liu Y Y, Dong J, Wang X, Lyu C W, Wang J C, Lu K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Front Plant Sci, 2017, 8: 914.
doi: 10.3389/fpls.2017.00914 pmid: 28690616
[5] Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioengin, 2001, 91: 58-63.
doi: 10.1016/S1389-1723(01)80112-2
[6] 沈升法, 项超, 吴列洪, 李兵, 罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析. 中国农业科学, 2021, 54: 34-45.
Shen S F, Xiang C, Wu L H, Li B, Luo Z G. Analysis on the characteristics of soluble sugar components in sweetpotato storage root and its relationship with taste. Sci Agric Sin, 2021, 54: 34-45. (in Chinese with English abstract)
[7] Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 2018, 247: 587-611.
doi: 10.1007/s00425-017-2807-4
[8] Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445
[9] Xu Q Y, Yin S J, Ma Y, Song M, Song Y J, Mu S C, Li Y S, Liu X H, Ren Y J, Gao C, Chen S L, Liesche J. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc Natl Acad Sci USA, 2020, 117: 6223-6230.
doi: 10.1073/pnas.1912754117
[10] Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. Sugar transporters in plants: new insights and discoveries. Plant Cell Physiol, 2017, 58: 1442-1460.
doi: 10.1093/pcp/pcx090 pmid: 28922744
[11] Ruan Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol, 2014, 65: 33-67.
doi: 10.1146/annurev-arplant-050213-040251
[12] Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat Plants, 2020, 6: 55-66.
doi: 10.1038/s41477-020-0590-x pmid: 32042154
[13] Keller I, Rodrigues C M, Neuhaus H E, Pommerrenig B. Improved resource allocation and stabilization of yield under abiotic stress. J Plant Physiol, 2021, 257: 153336.
doi: 10.1016/j.jplph.2020.153336
[14] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[15] Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3_slv/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
doi: 10.1111/jipb.12173
[16] Li X, Si W, Qin Q, Wu H, Jiang H. Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages. Sci Rep, 2018, 8: 13440.
doi: 10.1038/s41598-018-31589-x
[17] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[18] Feng L, Frommer W B. Structure and function of semiSWEET and SWEET sugar transporters. Trends Biochem Sci, 2015, 40: 480-486.
doi: 10.1016/j.tibs.2015.05.005 pmid: 26071195
[19] Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J, 2015, 83: 1046-1058.
doi: 10.1111/tpj.12948
[20] Anjali A, Fatima U, Manu M S, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: an update. Plant Physiol Biochem, 2020, 156: 1-6.
doi: 10.1016/j.plaphy.2020.08.043
[21] Jeena G S, Kumar S, Shukla R K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Mol Biol, 2019, 100: 351-365.
doi: 10.1007/s11103-019-00872-4
[22] Sun M X, Huang X Y, Yang J, Guan Y F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod, 2013, 26: 83-91.
doi: 10.1007/s00497-012-0208-1
[23] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508: 546-549.
doi: 10.1038/nature13082
[24] Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[25] Ko H Y, Ho L H, Neuhaus H E, Guo W J. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiol, 2021, 187: 2230-2245.
doi: 10.1093/plphys/kiab290
[26] Ge Y X, Angenent G C, Wittich P E, Peters J, Franken J, Busscher M, Zhang L M, Dahlhaus E, Kater M M, Wullems G J, Creemers-Molenaar T. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J, 2000, 24: 725-734.
pmid: 11135107
[27] Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. Rice SUT and SWEET transporters. Int J Mol Sci, 2021, 22: 11198.
doi: 10.3390/ijms222011198
[28] Wang S D, Yokosho K, Guo R Z, Whelan J, Ruan Y L, Ma J F, Shou H X. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol, 2019, 180: 2133-2141.
doi: 10.1104/pp.19.00641 pmid: 31221732
[29] Wang P P, Wei P N, Niu F F, Liu X F, Zhang H L, Lyu M L, Yuan Y, Wu B H. Cloning and functional assessments of floral- expressed SWEET transporter genes from Jasminum sambac. Int J Mol Sci, 2019, 20: 4001.
doi: 10.3390/ijms20164001
[30] Zhao D, You Y, Fan H Y, Zhu X F, Wang Y Y, Duan Y X, Xuan Y H, Chen L J. The role of sugar transporter genes during early infection by root-knot nematodes. Int J Mol Sci, 2018, 19: 302.
doi: 10.3390/ijms19010302
[31] Zeng X, Luo Y F, Vu N T Q, Shen S J, Xia K F, Zhang M Y. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua 11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol, 2020, 20: 313.
doi: 10.1186/s12870-020-02524-y
[32] Li Y, Wang Y N, Zhang H, Zhang Q, Zhai H, Liu Q C, He S Z. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Front Plant Sci, 2017, 8: 197.
[33] Chen L, Liu X, Huang X, Luo W, Long Y, Greiner S, Rausch T, Zhao H. Functional characterization of a drought-responsive invertase inhibitor from maize (Zea mays L.). Int J Mol Sci, 2019, 20: 4081.
doi: 10.3390/ijms20174081
[34] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
doi: 10.1371/journal.pone.0051502
[35] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protocols, 2008, 3: 1101-1108.
doi: 10.1038/nprot.2008.73
[36] Riesmeier J W, Hirner B, Frommer W B. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell, 1993, 5: 1591-1598.
[37] 尚璐, 姚远, 王运林, 孙冲, 陆小花, 耿梦婷, 符少萍, 李瑞梅, 段瑞军, 刘姣, 胡新文, 郭建春. 木薯碱性/中性转化酶MeNINV4酵母功能互补. 分子植物育种, 2018, 16: 1073-1078.
Shang L, Yao Y, Wang Y L, Sun C, Lu X H, Geng M T, Fu S P, Li R M, Duan R J, Liu J, Hu X W, Guo J C. Functional complementation of cassava alkaline/neutral invertase MeNINV4 in yeast. Mol Plant Breed, 2018, 16: 1073-1078. (in Chinese with English abstract)
[38] Verwaal R, Paalman J W G, Hogenkamp A, Verkleij A J, Verrips C T, Boonstra J. HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast, 2002, 19: 1029-1038.
pmid: 12210898
[39] Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg C P, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett, 1999, 464: 123-128.
pmid: 10618490
[40] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
pmid: 10069079
[41] Kunz H H, Hausler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115-128.
doi: 10.1111/j.1438-8677.2010.00349.x
[42] Han L, Zhu Y P, Liu M, Zhou Y, Lu G Y, Lan L, Wang X P, Zhao Y F, Zhang X J C. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. Proc Natl Acad Sci USA, 2017, 114: 10089-10094.
doi: 10.1073/pnas.1709241114
[43] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析. 作物学报, 2020, 46: 1120-1127.
doi: 10.3724/SP.J.1006.2020.94173
Wang D D, Liu H J, Wang H X, Zhang P, Shi C Y. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3. Acta Agron Sin, 2020, 46: 1120-1127. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94173
[44] Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[45] Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
doi: 10.1105/tpc.12.7.1153
[46] Schneider S, Hulpke S, Schulz A, Yaron I, Holl J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biol, 2012, 14: 325-336.
[47] Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132
[48] Zhou A, Ma H, Feng S, Gong S, Wang J. A novel sugar transporter from Dianthus spiculifolius, DsSWEET12, affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis. Int J Mol Sci, 2018, 19: 497.
doi: 10.3390/ijms19020497
[49] Ren R H, Yue X F, Li J N, Xie S, Guo S H, Zhang Z W. Coexpression of sucrose synthase and the SWEET transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries. Front Plant Sci, 2020, 11: 321.
doi: 10.3389/fpls.2020.00321
[50] Bezrutczyk M, Hartwig T, Horschman M, Char S N, Yang J, Yang B, Frommer W B, Sosso D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol, 2018, 218: 594-603.
doi: 10.1111/nph.15021 pmid: 29451311
[51] Li P, Wang L H, Liu H B, Yuan M. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. Crop J, 2022, 10: 98-108.
doi: 10.1016/j.cj.2021.04.012
[52] Zhang Z, Zou L M, Ren C, Ren F R, Wang Y, Fan P G, Li S H, Liang Z C. VvSWEET10 mediates sugar accumulation in grapes. Genes, 2019, 10: 255.
doi: 10.3390/genes10040255
[53] Zhang X S, Feng C Y, Wang M N, Li T L, Liu X, Jiang J. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Hortic Res, 2021, 8: 186.
doi: 10.1038/s41438-021-00624-w
[1] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[2] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[3] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[6] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[7] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[8] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[9] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[10] 袁玉洁, 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军. 蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响[J]. 作物学报, 2022, 48(12): 3225-3233.
[11] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析[J]. 作物学报, 2022, 48(11): 2786-2796.
[12] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[13] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[14] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[15] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[6] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[9] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[10] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .