欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 97-104.doi: 10.3724/SP.J.1006.2023.14239

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析

李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基()   

  1. 福建农林大学国家甘蔗工程技术研究中心, 福建福州350002
  • 收稿日期:2021-12-17 接受日期:2022-03-25 出版日期:2023-01-12 网络出版日期:2022-04-20
  • 通讯作者: 高三基
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(糖料, CARS-170302(CARS-170302);国家甘蔗工程技术研究中心主任基金项目(KJG16005M)

Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection

LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji()   

  1. National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-12-17 Accepted:2022-03-25 Published:2023-01-12 Published online:2022-04-20
  • Contact: GAO San-Ji
  • Supported by:
    Earmarked Fund of the China Agriculture Research System of MOF and MARA(CARS-170302);Director’s Innovation Fund in National Engineering Research Center for Sugarcane, FAFU, China(KJG16005M)

摘要:

PR10是一种病程相关蛋白(pathogenesis-related protein, PR), 在植物生长发育、应激生物和非生物胁迫时发挥重要作用。本研究利用RT-PCR技术从甘蔗赤条病抗病品种新台糖22号和感病品种闽糖11-610叶片克隆获得ScPR10基因, 并利用实时荧光定量PCR (RT-qPCR)、转录组和蛋白质组分析, 研究在接种燕麦食酸菌燕麦亚种(Acidovorax avenae subsp. avenae, Aaa)之后这2个品种ScPR10基因的转录和蛋白表达模式。序列分析显示, 本研究克隆获得2个ScPR10基因, 编码187个氨基酸, 比其他植物PR10蛋白多了27个氨基酸, 含有保守结构域P-loop和Bet v 1; 与已报道的甘蔗、高粱和斑茅的PR10亲缘关系较近。在Aaa胁迫下, RT-qPCR分析表明抗病、感病品种ScPR10基因的表达量均显著上调, 尤其在接种24 h时, 表达量最高, 分别为对照的27.2倍和39.7倍; 转录组数据分析结果显示, 该基因表达水平在抗病、感病品种上均显著提高, 尤其在接种72 h时, 表达量最高, log2 FC值为5.3~5.4。蛋白互作预测发现, ScPR10与植物PDR型ABCG转运蛋白(Cluster-13677.282407)、蛋白激酶(Cluster- 13677.166559)之间存在互作关系。蛋白质组数据分析显示, 在Aaa接种24 h时, 抗病、感病品种ScPR10均为上调表达, log2FC值为1.65~1.69; 与ScPR10互作的PDR型ABCG转运蛋白成员的表达量在抗病、感病品种上有不同程度提高; 蛋白激酶表达量在感病品种上有显著提高, 但是, 在抗病品种上表达量没有显著变化。本研究结果表明, ScPR10可能与PDR型ABCG转运蛋白正向协同参与甘蔗寄主应答Aaa病菌侵染的防御响应。

关键词: PR10蛋白, 燕麦食酸菌燕麦亚种, 生物胁迫, 基因表达, 甘蔗

Abstract:

PR10 is a pathogenesis-related protein (PR), which plays critical roles in the growth and development and various environmental stress responses in plants. This study demonstrated that two ScPR10 genes were cloned from the leaf samples of ROC22 (resistant to red stripe) and Mintang 11-610 (susceptible to red stripe) by RT-PCR, and then RT-qPCR, transcriptome, and proteomics assays were carried out to explore the expression patterns of two genes in varieties ROC22 and Mintang 11-610 post inoculation with red stripe pathogen Acidovorax avenae subsp. avenae (Aaa). Sequence analysis showed that the two ScPR10 genes encoding 187 amino acids had more 27 amino acids than PR10 proteins from other plants, which contained the conserved domains P-loop and Bet v 1. ScPR10 obtained in this study shared high homology with these published PR10 proteins encoded by Saccharum spp., Sorghum bicolor, and Erianthus arundinaceus. The RT-qPCR analysis showed that the relative expression levels of ScPR10 genes were significantly increased by 27.2 times and 39.7 times in the resistant and susceptible varieties under Aaa infection, especially at 24 hours post inoculation (24 hpi), compared with the controls (0 hpi), respectively. Meanwhile, the transcriptome data revealed that the relative expression levels of ScPR10 genes were significantly increased by 5.3-5.4 folds [log2(Fold Change)] in the two varieties under Aaa infection, particular at 72 hours post inoculation (72 hpi). Prediction of protein interaction revealed that ScPR10 would interact with the pleiotropic drug resistance (PDR) protein of ABCG transporter subfamily (Cluster-13677.282407) and protein kinase (Cluster-13677.166559). Proteomics analysis referred that the relative expression of ScPR10 proteins were increased by 1.65-1.69 folds (log2FC) evaluated by 24 hpi versus 0 hpi in resistant and susceptible varieties. Similarly, the relative expression levels of the ABC transporter (Cluster-13677.282407) were upregulated to a certain extent in two varieties, but the relative expression levels of protein kinase (Cluster-13677.166559) were only enhanced in Mintang 11-610, not in ROC22. In conclusion, the ScPR10 may synergize with the ABC transporter (Cluster-13677.282407) involving in the defense response in sugarcane in response to Aaa infection.

Key words: PR10 protein, Acidovorax avenae subsp. avenae, biotic stress, gene expression, Saccharum spp.

表1

甘蔗ScPR10蛋白的理化性质"

NCBI登录号
NCBI
accession ID.
基因长度
Gene length (bp)
CDS长度
CDS length
(bp)
氨基酸
No. of amino acid (aa)
分子式
Molecular
formula
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
亲水性
Hydrophilicity
OK290572 697 564 187 C883H1401N231O274S5 19,797.52 4.98 32.02 0.042
OK290571 695 564 187 C885H1406N230O275S5 19,828.58 4.98 31.93 0.067

图1

甘蔗ScPR10蛋白结构分析 A和B分别是来自新台糖22号和闽糖11-610的ScPR10蛋白二级结构; C为甘蔗ScPR10蛋白三级结构; 蓝色、粉红色、红色和绿色分别表示α-螺旋、无规则卷曲、延伸链和β-折叠; α (1~3)、β (1~7)和L (1~9)分别表示α-螺旋、β-折叠和环肽链。"

图2

几种禾本科植物PR10蛋白序列多重比对 P-loop保守结构域用红色方框表示, Bet v 1用下画线标注, 疏水性蛋白结合位点用黄色三角符号表示。"

图3

几种禾本科植物PR10蛋白的系统进化树分析(A)和一致性热图(B)"

图4

甘蔗ScPR10基因应答Aaa胁迫的转录表达模式 A: RT-qPCR验证; B: 转录组数据(log2FC)。新台糖22号(ROC22)为抗病品种, 闽糖11-610 (MT11-610)为感病品种。柱上不同小写字母表示显著差异(P < 0.05)。"

图5

ScPR10及其互作蛋白的转录后表达水平 蓝色、红色方框数值表示抗、感病品种在Aaa胁迫24 h (R24或S24)与对照组处理0 h (CK0)的蛋白表达量的比值, 用log2 FC值表示。"

[1] Aono A H, Pimenta R J G, Garcia A L B, Correr F H, Hosaka G K, Carrasco M M, Cardoso-Silva C B, Mancini M C, Sforça D A, Dos Santos L B, Nagai J S, Pinto L R, Landell M G A, Carneiro M S, Balsalobre T W, Quiles M G, Pereira W A, Margarido G R A, de Souza A P. The wild sugarcane and sorghum kinomes: Insights into expansion, diversification, and expression patterns. Front Plant Sci, 2021, 12: 668623.
doi: 10.3389/fpls.2021.668623
[2] 刘晓雪, 邬志军. 2020/2021榨季国内外食糖市场回顾与2021/2022榨季展望. 中国糖料, 2021, 43(4): 81-88.
Liu X X, Wu Z J. Domestic and foreign sugar markets in 2020/2021 crushing season and their prospect for 2021/2022 crushing season. Sugar Crops China, 2021, 43(4): 81-88. (in Chinese with English abstract)
[3] Fontana P D, Fontana C A, Bassi D, Puglisi E, Salazar S M, Vignolo G M, Coccocelli P S. Genome sequence of Acidovorax avenae strain T10_61 associated with sugarcane red stripe in Argentina. Genome Announc, 2016, 4: e01669.
[4] Li X Y, Sun H D, Rott P C, Wang J D, Huang M T, Zhang Q Q, Gao S J. Molecular identification and prevalence of Acidovorax avenae subsp. avenae causing red stripe of sugarcane in China. Plant Pathol, 2018, 67: 929-937.
doi: 10.1111/ppa.12811
[5] Rott P C, Davis M J. Red stripe (top rot). In: Rott P C, Bailey R A, Comstock J C, Croft B J, Saumtally A S, eds. A Guide to Sugarcane Diseases. Montpellier, France: CIRAD/ISSCT, 2000. pp 58-62.
[6] 储娜, 孙会东, 周敬如, 傅华英, 李晓燕, 高三基. 甘蔗赤条病及其病原生物学研究进展. 中国糖料, 2020, 42(1): 5.
Chu N, Sun H D, Zhou J R, Fu H Y, Li X Y, Gao S J. Research advances of sugarcane red stripe disease and its pathogeny biology. Sugar Crops China, 2020, 42(1): 5. (in Chinese with English abstract)
[7] Fontana P D, Rago A M, Fontana C A, Vignolo G M, Cocconcelli P S, Mariotti J A. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in northwestern Argentina. Eur J Plant Pathol, 2013, 137: 525-534.
doi: 10.1007/s10658-013-0263-y
[8] Shan H, Li W, Huang Y, Wang X, Zhang R, Luo Z, Yin J. First detection of sugarcane red stripe caused by Acidovorax avenae subsp. avenae in Yuanjiang, Yunnan, China. Trop Plant Pathol, 2017, 42: 137-141.
doi: 10.1007/s40858-017-0132-x
[9] Loon L, Strien E. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999, 55(2): 85-97.
doi: 10.1006/pmpp.1999.0213
[10] Joshi V, Joshi N, Vyas A, Jadhav S K. Biocontrol agents second metabolites. Cambridge: Woodhead Publishing, 2021. pp 573-590.
[11] Zribi I, Ghorbel M, Brini F. Pathogenesis related proteins (PRs): from cellular mechanisms to plant defense. Curr Protein Peptide Sci, 2021, 22: 1-17.
doi: 10.2174/138920372201210301112421
[12] Loon L V, Rep M, Pieterse C. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 2006, 44: 135-162.
pmid: 16602946
[13] Somssich I E, Schmelzer E, Kawalleck P, Hahlbrock K. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol General Genetics, 1988, 213: 93-98.
doi: 10.1007/BF00333403
[14] Liu J J, Ekramoddoullah A. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol, 2006, 68: 3-13.
doi: 10.1016/j.pmpp.2006.06.004
[15] Bantignies B, Séguin J, Muzac I, Dédaldéchamp F, Gulick F, Ibrahim R. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol, 2000, 42: 871-881.
doi: 10.1023/A:1006475303115
[16] Souza T P, Dias R O, Silvafilho M C. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol, 2017, 40: 360-372.
doi: S1415-47572017000200360 pmid: 28222203
[17] 杨涛, 王艳. 植物病程相关蛋白PR-10的研究进展. 植物生理学报, 2017, 53: 2057-2068.
Yang T, Wang Y. Research progress of plant pathogenesis related protein PR-10. Plant Physiol J, 2017, 53: 2057-2068. (in Chinese with English abstract)
[18] Xie Y R, Chen Z Y, Brown R L, Bhatnagar D. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J Plant Physiol, 2010, 167: 121-130.
doi: 10.1016/j.jplph.2009.07.004
[19] He M Y, Xu Y, Cao J L, Zhu Z G, Jiao Y T, Wang Y J, Guan X, Yang Y Z, Xu W R, Fu Z F. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, 2013, 250: 129-140.
doi: 10.1007/s00709-012-0384-8
[20] Oloriz M I, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Rep, 2012; 31: 955-969.
[21] Peng Q, Su Y C, Ling H, Ahmad W, Gao S W, Guo J L, Que Y X, Xu L P. A sugarcane pathogenesis-related protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. Plant Cell Rep, 2017, 36: 1427-1440.
doi: 10.1007/s00299-017-2166-4
[22] Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS One, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476
[23] Zhou J R, Sun H D, Ali A, Rott P C, Gao S J. Quantitative proteomic analysis of the sugarcane defense responses incited by Acidovorax avenae subsp. avenae causing red stripe. Ind Crops Prod, 2021, 162: 113275.
doi: 10.1016/j.indcrop.2021.113275
[24] Chu N, Zhou J R, Fu H Y, Huang M T, Zhang H L, Gao S J. Global gene responses of resistant and susceptible sugarcane cultivars to Acidovorax avenae subsp. avenae identified using comparative transcriptome analysis. Microorganisms, 2020, 8: 10.
doi: 10.3390/microorganisms8010010
[25] Agarwal P, Agarwal P K. Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep, 2014, 41: 599-611.
doi: 10.1007/s11033-013-2897-4
[26] Chaudhary S, Jabre I, Reddy A S N, Staiger D, Syed N H. Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci, 2019, 24: 496-506.
doi: S1360-1385(19)30045-7 pmid: 30852095
[27] Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 1-26.
doi: 10.1186/s13059-020-02207-9
[28] 张玉, 王杰, 周世奇, 郑甜甜, 罗成刚, 王元英. 烟草PR10蛋白生物活性及赤星病菌Alternaria alternata诱导下的表达分析. 植物保护学报, 2018, 45: 455-462.
Zhang Y, Wang J, Zhou S Q, Zheng T T, Luo C G, Wang Y Y. Biological activity of tobacco PR10 protein and expression analysis induced by Alternaria alternata. J Plant Prot, 2018, 45: 455-462 (in Chinese with English abstract)
[29] Nuruzzaman M, Zhang R, Cao H Z, Luo Z Y. Plant pleiotropic drug resistance transporters: Transport mechanism, gene expression, and function. J Integr Plant Biol, 2014, 56: 729-740.
doi: 10.1111/jipb.12196
[30] Dahuja A, Kumar R R, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Planta, 2021, 171: 785-801.
doi: 10.1111/ppl.13302
[31] 贺祯媚, 李东明, 齐艳华. 植物ABCB亚家族生物学功能研究进展. 植物学报, 2019, 54: 688-698.
doi: 10.11983/CBB19140
He Z M, Li D M, Qi Y H. Advances in Biofunctions of the ABCB Subfamily in Plants. Chin Bull Bot, 2019, 54: 688-698. (in Chinese with English abstract)
[32] Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones D A, Kawakita K, Takemoto D. The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in pre- and postinvasion defense against Phytophthora infestans in Nicotiana benthamiana. Plant Cell, 2016, 28: 1163-1181.
doi: 10.1105/tpc.15.00721
[1] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[2] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[3] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[4] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[5] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[6] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[7] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[8] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[9] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[10] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[11] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[12] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[13] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[14] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[15] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[2] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[10] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .