欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 833-844.doi: 10.3724/SP.J.1006.2023.24027

• 耕作栽培·生理生化 • 上一篇    下一篇

种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响

刘姗姗(), 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文(), 杨文钰   

  1. 四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2022-01-22 接受日期:2022-09-05 出版日期:2023-03-12 网络出版日期:2022-09-14
  • 通讯作者: 雍太文
  • 作者简介:E-mail: 1525740873@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(大豆, CARS-04-PS20);国家自然科学基金项目(31671625)

Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping

LIU Shan-Shan(), PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen(), YANG Wen-Yu   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2022-01-22 Accepted:2022-09-05 Published:2023-03-12 Published online:2022-09-14
  • Contact: YONG Tai-Wen
  • Supported by:
    China Agriculture Research System of MOF of MARA(Soybean, CARS-04-PS20);General Project of National Natural Science Foundation of China(31671625)

摘要:

为充分挖掘套作大豆的固氮潜力, 本试验以玉米/大豆带状套作系统为对象, 研究了不同玉豆间距(30 cm、45 cm、60 cm和75 cm)下不同结瘤特性大豆品种(贡选1号、桂夏3号和南豆25号)的根瘤生长及固氮潜力差异。结果表明, 与单作相比, 带状套作可延缓大豆根瘤数目和鲜重峰值出现的时间: 玉豆间距60 cm处理下, 各品种大豆根瘤数目和鲜重显著高于其他间距处理, 并在达到峰值期后高于单作大豆;品种间表现为: 南豆25号>桂夏3号>贡选1号。带状套作相对于单作会降低始粒期(R5)前大豆根瘤的单株固氮潜力, 但玉豆间距60 cm处理下, R5期贡选1号、桂夏3号和南豆25号的单株固氮潜力2年平均较单作提高8.53%、16.40%和13.70%。不同大豆品种根瘤侵染细胞内含物积累过程差异较大, 相较单作, 玉豆间距60 cm处理下, R5期类菌体数量增多, 其中聚-β-羟基丁酸盐颗粒(PHB)增加, 以南豆25号表现最优。因此, 带状套作下适宜的种间距(玉豆间距60 cm)可增加R5期大豆根瘤数目和鲜重, 提高大豆根瘤类菌体和PHB的数量, 增强大豆根瘤的固氮潜力, 以强结瘤品种南豆25号效果最好。

关键词: 玉米/大豆带状套作, 种间距, 结瘤特性, 根瘤生长, 超微结构, 固氮潜力

Abstract:

Abstract: To exploit the difference of root nodule growth and nitrogen fixation potential of soybean in maize-soybean relay strip intercropping system, a two-year filed experiment with different nodulation characteristics soybean varieties (Gongxuan 1, Guixia 3, and Nandou 25) under different maize-soybean spacing (30, 45, 60, and 75 cm) was conducted. The results showed that the peaks of soybean nodule number and fresh weight were delayed under the intercropping system compared with soybean monoculture. The root nodule number and fresh weight of each variety under 60 cm were significantly higher than those of other spacing treatments, and were higher than those of monoculture soybean after reaching the peak stage. The differences among varieties were as follows: Nandou 25 > Guixia 3 > Gongxuan 1. Compared with soybean monoculture, nitrogen fixation potential of soybean nodules per plant before the beginning seed stage (R5) under intercropping mode was reduced. However, nitrogen fixation potential per plant of Gongxuan 1, Guixia 3, and Nandou 25 increased by 8.53%, 16.40%, and 13.70% on average in two years under 60 cm at R5 stage. The accumulation process of inclusions in infected cells of different soybean varieties was quite different. Compared with soybean monoculture, the number of bacteroids increased under 60 cm at R5, among which poly-β-hydroxybutyrate (PHB) increased, and Nandou 25 was the best. Therefore, to improve the number of soybean nodule bacteroids, PHB and nitrogen fixation potential the appropriate inter-plant row spacing (60 cm) under intercropping can increase soybean nodule number and fresh weight at R5 stage, and Nandou 25 with strong nodulation had the best effect.

Key words: maize/soybean relay strip intercropping, row spacing, nodular varieties, root nodule growth, ultrastructure, nitrogen fixation potential

图1

试验地2016-2017年4月至10月的日降雨量和日平均温度图"

表1

3个大豆品种的主要特征"

主要特征
Main characteristics
贡选1号
Gongxuan 1
桂夏3号
Guixia 3
南豆25号
Nandou 25
生育期 Maturity (d) 120 108 134
叶形 Leaf shape 卵圆 Oval 椭圆 Elliptical 卵圆 Oval
株高 Plant height (cm) 96.00 59.90 67.50
结荚习性 Growth habit 有限 Determinate 有限 Determinate 有限 Determinate
蛋白质 Protein (%) 47.00 43.62 49.10
脂肪 Fat (%) 17.20 20.11 17.50

图2

玉米/大豆带状套作种植图 RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。"

表2

不同种间距下不同大豆品种结瘤能力的主效应分析"

处理
Treatment
单株根瘤数 Root nodule number per plant 单株根瘤鲜重 Root nodule fresh weight per plant (g)
V5 R2 R3 R4 R5 R6 V5 R2 R3 R4 R5 R6
年份 Years (Y) 1350.82** 1126.19** 237.74** 15.49** 61.69** 10.66** 838.99** 721.82** 354.81** 133.85** 0.62 0.06
种间距
Row spacing (R)
382.16** 473.47** 309.46** 155.95** 96.34** 40.80** 280.54** 143.60** 102.65** 105.95** 106.05** 39.28**
品种 Varieties (V) 49.39** 49.50** 20.76** 25.87** 25.07** 57.80** 43.01** 13.27** 4.84* 33.62** 24.91** 19.31**
年份×种间距 Y×R 332.84** 183.15** 59.25** 29.07** 17.09** 24.23** 285.32** 60.24** 45.57** 65.83** 9.69** 1.86
年份×品种 Y×V 9.11** 26.14** 20.15** 8.30** 4.73* 8.48** 21.25** 14.27** 29.57** 1.48 1.19 2.18
种间距×品种 R×V 0.88 9.07** 5.23** 1.81 3.14* 1.61 10.08** 2.60* 4.40** 1.60 5.08** 0.88
年际×种间距×品种 Y×R×V 1.43 3.10* 1.09 1.81 3.06* 3.31** 5.16** 0.29 3.04* 2.88* 3.82** 1.04

图3

不同种间距下不同大豆品种单株根瘤数动态变化图 V5: 五叶期; R1: 始花期; R2: 盛花期; R3: 始荚期; R4: 盛荚期; R5: 始粒期; R6: 鼓粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

图4

不同种间距下不同大豆品种单株根瘤鲜重动态变化图 V5: 五叶期; R1: 始花期; R2: 盛花期; R3: 始荚期; R4: 盛荚期; R5: 始粒期; R6: 鼓粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

图5

不同种间距下贡选1号根瘤侵染细胞内含物积累过程(放大倍数30,000×) R: 根瘤菌; PHB: 聚-β-羟基丁酸盐颗粒; PP: 多磷酸盐颗粒; VE: 泡囊; B: 类菌体。V5: 五叶期; R2: 盛花期; R5: 始粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

图6

不同种间距下桂夏3号根瘤侵染细胞内含物积累过程(放大倍数30,000×) R: 根瘤菌; PHB: 聚-β-羟基丁酸盐颗粒; PP: 多磷酸盐颗粒; VE: 泡囊; B: 类菌体。V5: 五叶期; R2: 盛花期; R5: 始粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

图7

不同种间距下南豆25号根瘤侵染细胞内含物积累过程(放大倍数30,000×) R: 根瘤菌; PHB: 聚-β-羟基丁酸盐颗粒; PP: 多磷酸盐颗粒; VE: 泡囊; B: 类菌体。V5: 五叶期; R2: 盛花期; R5: 始粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

表3

不同种间距下不同大豆品种固氮能力的主效应分析"

处理
Treatment
固氮酶活性
Nitrogenase activity of per unit mass (mL g-1 h-1)
单株固氮潜力
Nitrogenase activity of per plant (mL h-1 plant-1)
V5 R1 R3 R4 R5 V5 R1 R3 R4 R5
年份 Years (Y) 3.92 1207.12** 4.39* 280.81** 145.77** 266.26** 95.61** 72.09** 187.77** 117.82**
种间距 Row spacing (R) 25.01** 155.05** 63.62** 43.00** 40.07** 44.54** 122.48** 107.08** 231.80** 21.65**
品种 Varieties (V) 9.19** 81.56** 33.34** 30.76** 46.49** 8.31** 8.14** 11.65** 62.59** 14.70**
年份×种间距 Y×R 0.61 6.98** 4.44** 0.58 3.81* 10.17** 14.57** 1.47 0.70 1.29
年份×品种 Y×V 4.06* 24.10** 9.66** 13.67** 1.27 0.91 1.27 6.43** 6.85** 6.69**
种间距×品种 R×V 3.07* 5.20** 2.46* 3.16* 3.17* 0.63 2.91* 4.64** 15.68** 3.14*
年际×种间距×品种 Y×R×V 1.56 1.70 1.32 2.08 0.84 1.27 3.41** 4.38** 5.75** 3.10*

图8

不同种间距下不同大豆品种根瘤固氮酶活性动态变化图 V5: 五叶期; R1: 始花期; R3: 始荚期; R4: 盛荚期; R5: 始粒期; R6: 鼓粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

图9

不同种间距下不同大豆品种单株固氮潜力动态变化图 V5: 五叶期; R1: 始花期; R3: 始荚期; R4: 盛荚期; R5: 始粒期; R6: 鼓粒期。SS: 大豆单作; RI30: 玉米大豆种间距30 cm; RI45: 玉米大豆种间距45 cm; RI60: 玉米大豆种间距60 cm; RI75: 玉米大豆种间距75 cm。GX1: 贡选1号; GX3: 桂夏3号; ND25: 南豆25号。"

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2021: 48: 1-14.
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2021, 48: 1-14. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03058
[2] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[3] Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol, 2010, 52: 61-76.
doi: 10.1111/j.1744-7909.2010.00899.x
[4] 杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52: 3748-3750.
Yang W Y, Yang F. Developing maize-soybean strip intercropping for demand security of national food. Sci Agric Sin, 2019, 52: 3748-3750. (in Chinese with English abstract)
[5] 苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能. 生态学报, 2013, 33: 4505-4514.
Su B Y, Chen S B, Li Y G, Yang W Y. Intercropping enhances the farmland ecosystem services. Acta Ecol Sin, 2013, 33: 4505-4514. (in Chinese with English abstract)
[6] Ferguson B J, Mens C, Hastwell A H, Zhang M B, Su H, Jones C H, Chu X T, Gresshoff P M. Legume nodulation: the host controls the party. Plant Cell Environ, 2019, 42: 41-51.
doi: 10.1111/pce.13348
[7] Wang X Y, Gao Y Z, Zhang H L, Shao Z Q, Sun B R, Gao Q. Enhancement of rhizosphere citric acid and decrease of NO3- /NH4+ ratio by root interactions facilitate N fixation and transfer. Plant Soil, 2020, 447: 169-182.
doi: 10.1007/s11104-018-03918-6
[8] Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambersb H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA, 2016, 113: 6496-6501.
doi: 10.1073/pnas.1523580113
[9] 范元芳, 杨峰, 何知舟, 王锐, 刘沁林, 袁小琴, 雍太文, 武晓玲, 杨文钰. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016, 24: 608-617.
Fan Y F, Yang F, He Z Z, Wang R, Liu Q L, Yuan X Q, Yong T W, Wu X L, Yang W Y. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system. Chin J Eco-Agric, 2016, 24: 608-617. (in Chinese with English abstract)
[10] 王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19: 323-329.
pmid: 18464638
Wang Z, Yang W Y, Wu X Y, Wu Q L. Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean. Chin J Appl Ecol, 2008, 19: 323-329. (in Chinese with English abstract)
pmid: 18464638
[11] 于晓波, 苏本营, 龚万灼, 罗玲, 刘卫国, 杨文钰, 张明荣, 吴海英, 曾宪堂. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响. 中国农业科学, 2014, 47: 1743-1753.
Yu X B, Su B Y, Gong W Z, Luo L, Liu W G, Yang W Y, Zhang M R, Wu H Y, Zeng X T. The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping. Sci Agric Sin, 2014, 47: 1743-1753. (in Chinese with English abstract)
[12] 庞婷, 陈平, 袁晓婷, 雷鹿, 王甜, 付智丹, 汪锦, 杨文钰, 张晓娜, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
Pang T, Chen P, Yuan X T, Lei L, Wang T, Fu Z D, Wang J, Yang W Y, Zhang X N, Yong T W. Effects of Row Spacing on Dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
[13] Carroll B J, Mcneil D L, Gresshoff P M. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 1985, 82: 4162-4166.
pmid: 16593577
[14] 庞婷, 帅鹏, 陈平, 杜青, 付智丹, 杨文钰, 雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响. 浙江大学学报(农业与生命科学版), 2017, 43: 451-461.
Pang T, Shuai P, Chen P, Du Q, Fu Z D, Yang W Y, Yong T W. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean. J Zhejiang Univ (Agric Life Sci), 2017, 43: 451-461. (in Chinese with English abstract)
[15] 赵财, 柴强, 乔寅英, 王建康. 禾豆间距对间作豌豆“氮阻遏”减缓效应的影响. 中国生态农业学报, 2016, 24: 1169-1176.
Zhao C, Chai Q, Qiao Y Y, Wang J K. Effect of cereal-legume spacing in intercropping system on alleviating “N inhibition” in pea plants. Chin J Eco-Agric, 2016, 24: 1169-1176. (in Chinese with English abstract)
[16] Ratcliff W C, Kadam S V, Denison R F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol, 2008, 65: 391-399.
doi: 10.1111/j.1574-6941.2008.00544.x pmid: 18631180
[17] Dhingra H K, Priya K. Physiological and molecular identification of polyhydroxybutyrates (PHB) producing micro-organisms isolated from root nodules of leguminous plants. Acad J, 2013, 7: 3961-3967.
[18] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev, 1990, 54: 450-472.
doi: 10.1128/mr.54.4.450-472.1990 pmid: 2087222
[19] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agric, 2018, 17: 747-754.
doi: 10.1016/S2095-3119(17)61789-1
[20] 吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响. 作物学报, 2015, 41: 1740-1747.
doi: 10.3724/SP.J.1006.2015.01740
Wu Y S, Gong W Z, Liao D P, Wu X L, Yang F, Liu W G, Yong T W, Yang W Y. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system. Acta Agron Sin, 2015, 41: 1740-1747. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01740
[21] 吴海英, 梁建秋, 于晓波, 杨鹏, 张明荣. 大豆新品种南夏豆25的选育及配套高产栽培技术研究. 大豆科技, 2015, (2): 23-26.
Wu H Y, Liang J Q, Yu X B, Yang P, Zhang M R. Breeding of a new soybean variety Nanxiadou 25 and its supporting high-yield cultivation techniques. Soybean Sci Technol, 2015, (2): 23-26. (in Chinese with English abstract)
[22] 陈渊, 梁江, 韦清源. 优质夏大豆新品种——桂夏3号的选育. 作物杂志, 2008, (8): 417-418.
Chen Y, Liang J, Wei Q Y. Breeding of a new high quality summer soybean variety, Guixia No.3. Crops, 2008, (8): 417-418. (in Chinese with English abstract)
[23] 邱丽娟, 王曙明. 中国大豆品种志1993-2004. 北京: 中国农业出版社, 2007. p 12.
Qiu L J, Wang S M. Chinese Soybean Variety 1993-2004. Beijing: China Agricultural Press, 2007. p 12. (in Chinese)
[24] 杨虎彪, 李晓霞, 罗丽娟. 植物石蜡制片中透明和脱蜡技术的改良. 植物学报, 2009, 44: 230-235.
doi: 10.3969/j.issn.1674-3466.2009.02.013
Yang H B, Li X X, Luo L J. An improved clearing and de-waxing method for plant paraffin sectioning. Bull Bot, 2009, 44: 230-235. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3466.2009.02.013
[25] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 6-18.
Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Experiment Guide for Modern Plant Physiology. Beijing: Science Press, 1999. pp 6-18. (in Chinese)
[26] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[27] Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crop Res, 2014, 155: 245-253.
doi: 10.1016/j.fcr.2013.08.011
[28] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响. 作物学报, 2021, 47: 2268-2277.
Peng X H, Chen P, Du Q, Yang X L, Ren J B, Zheng B C, Luo K, Xie C, Lei L, Yong T W, Yang W Y. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean. Acta Agron Sin, 2021, 47: 2268-2277. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04237
[29] 林伟伟, 李娜, 陈雨珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报, 2022, 30: 26-37.
Lin W W, Li N, Chen L S, Wu Z Y, Lin W X, Shen L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chin J Eco-Agric, 2022, 30: 26-37. (in Chinese with English abstract)
[30] Hu H Y, Li H, Hao M M, Ren Y N, Zhang M K, Liu R Y, Zhang Y, Li G, Chen J S, Ning T Y, Kuzyakov Y. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria. J Appl Ecol, 2021, 58: 13964.
[31] 吴雨珊, 龚万灼, 杨文钰, 雍太文, 杨峰, 刘卫国, 武晓玲. 带状套作复光后不同大豆品种干物质积累模型与特征分析. 中国生态农业学报, 2017, 25: 572-580.
Wu Y S, Gong W Z, Yang W Y, Yong T W, Yang F, Liu W G, Wu X L. Dynamic model and characteristics analysis of dry matter production after light recovery of different soybean varieties in relay strip intercropping systems. Chin J Eco-Agric, 2017, 25: 572-580. (in Chinese with English abstract)
[32] 陈平, 杜青, 庞婷, 付智丹, 杨燕竹, 刘佳, 帅鹏, 孙丽霞, 张瑞娣, 杨文钰, 雍太文. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36(1): 28-37.
Chen P, Du Q, Pang T, Fu Z D, Yang Y Z, Liu J, Shuai P, Sun L X, Zhang R D, Yang W Y, Yong T W. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. J Sichuan Agric Univ, 2018, 36(1): 28-37. (in Chinese with English abstract)
[33] 韩善华. 大豆根瘤中多磷酸盐积累的特征. 中国微生态学杂志, 1991, (2): 55-58.
Han S H. Characteristics of polyphosphate accumulation in soybean root nodules. Chin Microecol J, 1991, (2): 55-58. (in Chinese)
[34] Sinclair T R, Serraj R. Legume nitrogen fixation and drought. Nature, 1995, 378: 344-344.
doi: 10.1038/378344a0
[35] 左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响. 植物生理与分子生物学报, 2003, 29: 33-38.
Zuo Y M, Liu Y X, Zhang F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut. J Plant Physiol Mol Biol, 2003, 29: 33-38. (in Chinese with English abstract)
[1] 孙棋棋, 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋, 吴菊香, 李尚霞. 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响[J]. 作物学报, 2022, 48(10): 2575-2587.
[2] 郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 2020, 46(9): 1408-1415.
[3] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[4] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[5] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[6] 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285.
[7] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[8] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
[9] 王复标,黄福灯,程方民,李兆伟,胡东维,潘刚,毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察[J]. 作物学报, 2012, 38(05): 871-879.
[10] 邱义兰,李红,彭克勤,刘珠丽,陈松,刘如石,梁满中,陈良碧. 水稻“斑马叶”突变体b411叶绿体超微结构的观察[J]. 作物学报, 2010, 36(1): 184-190.
[11] 丁常宏,申家恒,郭德栋,尚娅佳,陆俊萍. 甜菜无融合生殖单体附加系M14大孢子发生的超微结构[J]. 作物学报, 2009, 35(8): 1516-1524.
[12] 李伟;申家恒;郭德栋;尚娅佳;陆俊萍;丁常宏. 栽培甜菜雌配子体发育中的超微结构[J]. 作物学报, 2009, 35(3): 490-498.
[13] 吕典华,宗学凤,王三根,凌英华,桑贤春,何光华. 两个水稻叶色突变体的光合特性研究[J]. 作物学报, 2009, 35(12): 2304-2308.
[14] 张其芳,刘奕,黄福灯,胡东维,程方民. 水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化学定位[J]. 作物学报, 2009, 35(12): 2280-2287.
[15] 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .