欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 845-855.doi: 10.3724/SP.J.1006.2023.24092

• 耕作栽培·生理生化 • 上一篇    下一篇

长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响

王劲松1(), 白歌1, 张艳慧1, 申甜雨2, 董二伟1, 焦晓燕1,*()   

  1. 1山西农业大学资源环境学院 / 省部共建有机旱作农业国家重点实验室(筹), 山西太原 030031
    2山西大学生物工程学院, 山西太原 030031
  • 收稿日期:2022-04-13 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-19
  • 通讯作者: 焦晓燕
  • 作者简介:E-mail: jinsong_wang@126.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A20);山西农业大学省部共建有机旱作农业国家重点实验室(筹)自主研发项目(202001-8)

Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum

WANG Jin-Song1(), BAI Ge1, ZHANG Yan-Hui1, SHEN Tian-Yu2, DONG Er-Wei1, JIAO Xiao-Yan1,*()   

  1. 1College of Resources & Environment, Shanxi Agricultural University / State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Taiyuan 030031, Shanxi, China
    2School of Life Science, Shanxi University, Taiyuan 030031, Shanxi, China
  • Received:2022-04-13 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-19
  • Contact: JIAO Xiao-Yan
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20);State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University(202001-8)

摘要:

高粱花后叶片缓慢衰老及持绿能提高高粱应对干旱等逆境胁迫能力, 也与籽粒产量密切相关; 在育种上已将叶片抗早衰性作为育种的优异性状以提高谷物产量及稳定性, 栽培措施(包括施肥)也能够提高高粱花后叶片的抗早衰能力。为探明长期不同施肥处理对高粱花后叶片抗早衰性和叶片功能的影响, 2020和2021年在大田条件下研究了长期单施氮磷钾化学肥料(NPK)、化学肥料结合有机肥(NPKM)、化学肥料结合有机肥和秸秆还田(NPKMS)、有机肥和秸秆还田(MS)和不施肥(CK)各处理对高粱花后叶面积变化、叶片SPAD值、单位叶面积氮累积量(SLN)、叶片抗氧化酶活性及籽粒产量等影响。结果表明, 施肥提高了高粱花后持绿叶面积、SPAD值和SLN值; 与NPK比较, NPKM、NPKMS和MS能够有效控制持绿叶面积的衰减, 提高上中下3个部位叶片的SPAD值和SLN值, 其中MS与NPK处理氮投入相当。施肥也提高了不同部位叶片的SOD、POD和CAT抗氧化酶活性, 降低了MDA的含量; 与NPK比较, NPKM、NPKMS和MS显著提高了SOD、POD和CAT抗氧化酶活性和降低了MDA的含量。与CK和NPK比较, NPKM、NPKMS和MS显著提高了单穗粒数而提高了高粱籽粒产量。为此, 长期施用有机肥结合秸秆还田即能代替化肥, 又能防止高粱叶片早衰提高高粱产量。

关键词: 高粱, 施肥, 花后, 叶片衰老, 抗氧化酶

Abstract:

Post-anthesis delayed leaf senescence and stay-green leaf phenotype are typically associated with the increasing yield, which offers the potential to increase crop resilience to drought stress. Retarded leaf senescence is beneficial to maintain cereal yield adaptability and stability. Many different management approaches, including fertilization, can modulate leaf senescence as well. The impacts of different long-term fertilization treatments on sorghum post-anthesis leaf senescence, antioxidant enzyme activities, and the yield were explored in 2020 and 2021 in this study. There were five treatments, which included chemical fertilizers of NPK (NPK), NPK plus manure (NPKM), NPK plus manure and straw returning (NPKMS), manure plus straw returning (MS), and fertilizer withdrawn (CK). Fertilizer application enhanced green leaf area per plant, SPAD reading and specific leaf nitrogen (SLN) compared with the control. Compared with NPK, the treatments of NPKM, NPKMS along with MS delayed post-anthesis attenuation of leaf area per plant and enhanced the values of SPAD and SLN in spite of the similar N application for NPK and MS. The treatments of NPK, NPKM, NPKMS, and MS increased antioxidant activities of SOD, POD, and CAT conjugate with a decreasing MDA content compared with the control. Among those, higher antioxidant enzymes activities and lower MDA content were induced by NPKM, NPKMS, and MS than NPK. In conclusion, NPKM, NPKMS, and MS promoted sorghum grain yield due to the increased grain number per panicle. Therefore, long-term application of manure combined with straw returning can not only replace chemical fertilizer but also delay leaf senescence, which leading to high grain yield in sorghum.

Key words: sorghum, fertilization, post-anthesis, leaf senescence, antioxidant enzyme activities

表1

2020年和2021年各处理基础土壤养分状况"

年度
Year
处理
Treatment
全氮
Total N
(g kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有机质
Organic matter
(g kg-1)
2020 NPK 0.80 8.77 144.63 15.09
NPKM 1.12 52.93 265.20 22.63
NPKMS 1.34 55.97 288.08 25.89
MS 1.25 47.47 264.33 22.08
CK 0.69 6.33 109.18 13.45
2021 NPK 0.78 7.20 141.45 14.96
NPKM 1.17 57.00 283.73 24.42
NPKMS 1.37 57.67 292.48 29.71
MS 1.29 53.43 279.25 23.46
CK 0.62 5.57 98.21 13.01

表2

2020年和2021年各处理的养分投入"

投入量
N, P2O5, and K2O input
(kg hm-2)
2020 2021
NPK NPKM NPKMS MS CK NPK NPKM NPKMS MS CK
无机肥投入
Chemical fertilizer
(kg hm-2)
N 225.00 225.00 225.00 225.00 225.00 225.00
P2O5 75.00 75.00 75.00 75.00 75.00 75.00
K2O 75.00 75.00 75.00 75.00 75.00 75.00
秸秆投入
Straw (kg hm-2)
N 45.65 47.46 29.76 25.50
P2O5 8.36 8.69 9.40 8.06
K2O 142.89 148.53 147.78 126.64
有机肥投入
Manure (kg hm-2)
N 119.53 119.53 119.53 108.76 108.76 108.76
P2O5 105.85 105.85 105.85 102.79 102.79 102.79
K2O 132.22 132.22 132.22 122.28 142.80 122.28
总投入
Total (kg hm-2)
N 225.00 344.53 390.18 166.98 225.00 333.76 363.52 134.26
P2O5 75.00 180.85 189.21 140.91 75.00 177.79 187.19 130.34
K2O 75.00 207.22 350.11 289.44 75.00 197.28 365.58 261.76

图1

2020年和2021年高粱生育期降雨量"

表3

不同施肥处理对高粱产量及产量构成的影响"

年度
Year
处理
Treatment
产量
Yield
(kg hm-2)
千粒重
1000-grain weight (g)
穗粒重
Grain weight per panicle
(g)
穗粒数
Grains per panicle
收获指数Harvest index
2020 NPK 8489.65 c 27.35 b 76.84 b 2809.74 b 0.49 b
NPKM 9283.55 b 27.93 b 78.57 b 2814.75 b 0.50 ab
NPKMS 10,080.85 a 27.28 b 82.85 a 3036.88 a 0.50 ab
MS 9940.75 a 28.64 b 82.83 a 2895.45 ab 0.52 a
CK 5877.65 d 32.32 a 51.64 c 1595.96 c 0.48 b
2021 NPK 9018.30 c 28.43 b 76.16 b 2679.92 c 0.52 b
NPKM 10,073.00 b 28.38 b 81.91 a 2886.80 a 0.53 b
NPKMS 10,323.50 a 28.37 b 81.86 a 2886.67 a 0.52 b
MS 10,303.50 a 29.93 a 82.42 a 2785.32 b 0.54 a
CK 5322.95 d 30.31 a 44.54 c 1269.96 d 0.47 c

图2

不同施肥处理对高粱花后干物质累积的影响 处理同表1。同一时期不同小写字母表示不同施肥处理在0.05水平上差异显著。"

图3

不同施肥处理对花后单株绿色叶面积的影响 处理同表1。同一时期不同小写字母表示不同施肥处理在0.05水平上差异显著。"

表4

不同施肥处理花后单株叶面积衰减动态"

处理
Treatment
2020年花后叶面积衰减率
Leaf area reduction rate days after anthesis in 2020 (%)
2021年花后叶面积衰减率
Leaf area reduction rate days after anthesis in 2021 (%)
5-40 d 40-60 d 5-60 d 10-20 d 20-30 d 30-40 d 40-50 d 10-50 d
NPK 24.40 42.63 56.63 17.45 15.27 17.17 17.19 52.02
NPKM 7.60 27.45 32.96 13.41 11.57 17.16 17.79 47.85
NPKMS 17.64 23.58 37.06 12.19 6.42 21.27 16.10 45.72
MS 22.60 10.37 30.62 16.94 12.15 17.93 16.04 49.72
CK 21.65 43.54 55.76 19.10 15.60 17.05 36.54 64.06

图4

不同施肥处理对不同层次叶片SPAD值的影响 处理同表1。"

表5

不同施肥处理对高粱花后不同部位叶片SLN值的影响"

叶片部位
Leaves position
2020 2021
花后天数
Days after anthesis
NPK NPKM NPKMS MS CK 花后天数
Days after anthesis
NPK NPKM NPKMS MS CK
上部
Upper
5 d 8.72 c 12.96 a 12.09 ab 10.63 b 4.08 d 10 d 10.10 b 11.38 ab 11.43 ab 11.53 a 6.01 c
40 d 3.84 ab 5.31 a 6.06 a 4.70 a 1.88 b 40 d 5.75 b 6.66 ab 7.62 a 6.76 ab 2.94 c
60 d 4.76 b 6.05 ab 7.05 a 7.08 a 2.76 c 50 d 7.54 a 8.19 a 7.69 b 8.44 a 3.00 c
中部
Middle
5 d 9.85 c 14.71 ab 15.50 a 12.55 b 5.14 d 10 d 10.21 b 11.04 a 11.87 a 12.12 a 5.76 c
40 d 5.07 b 5.67 ab 6.37 a 5.37 ab 2.34 c 40 d 3.57 b 5.57 a 6.41 a 6.52 a 2.23 c
60 d 6.61 b 10.73 a 10.04 a 10.83 a 3.21 c 50 d 5.42 b 7.99 a 7.91 b 8.83 a 2.17 c
下部
Lower
5 d 7.66 b 10.36 a 11.01 a 10.24 a 4.57 c 10 d 7.71 b 8.92 b 8.19 ab 9.72 a 4.26 c
40 d 4.98 a 3.87 a 4.91 a 4.13 a 2.87 a 40 d 3.27 c 4.35 b 5.55 a 3.42 c
60 d 50 d

表6

不同施肥处理对不同部位叶片抗氧化酶活性和丙二醛含量的影响"

处理
Treatment
SOD (U g-1 FW) POD (U g-1 FW min-1) CAT (U g-1 FW min-1) MDA (nmol g-1 FW)
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
NPK 429.94 b 318.29 a 230.69 a 855.50 bc 84.85 bc 1695.83 bc 83.89 c 84.33 bc 73.56 b 68.02 b 69.32 ab 36.49 a
NPKM 490.06 ab 399.26 a 305.52 a 1063.67 a 112.42 a 1966.50 a 118.00 b 84.33 bc 136.56 a 62.67 b 53.30 bc 13.57 b
NPKMS 553.93 a 426.63 a 327.27 a 972.17 ab 92.22 b 1828.83 b 181.67 a 119.89 a 95.04 ab 58.43 b 42.07 c 4.72 c
MS 562.38 a 359.91 a 175.70 a 935.17 abc 104.45 ab 1349.67 c 121.78 b 95.89 ab 88.00 ab 62.50 b 42.38 c 3.37 c
CK 337.19 c 262.89 a 149.70 a 758.22 c 65.67 c 783.78 d 53.22 d 55.56 c 65.93 b 121.61 a 79.03 a 34.00 a
[1] 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报, 2013, 39: 2183-2191.
doi: 10.3724/SP.J.1006.2013.02183
Wang Y J, Yang J S, Yuan C P, Liu J G, Li D H, Dong S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agron Sin, 2013, 39: 2183-2191. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02183
[2] 李东亚, 王祎, 汤继华, 许恒, 谭金芳, 韩燕来. 高氮和低氮条件下玉米穗位叶持绿性状的QTL定位. 植物营养与肥料学报, 2019, 25: 115-122.
Li D Y, Wang Y, Tang J H, Xu H, Tan J F, Han Y L. QTL mapping for ear leaf stay-green in maize under high and low N conditions. J Plant Nutr Fert, 2019, 25: 115-122. (in Chinese with English abstract)
[3] Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193-219.
doi: 10.1111/j.1744-7348.1993.tb04086.x
[4] Kamal N M, Gorafi Y, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci, 2019, 20: 5837.
doi: 10.3390/ijms20235837
[5] Christopher M, Chenu K, Jennings R, Fletcher S, Butler D, Borrell A, Christopher J. QTL for stay-green traits in wheat in well-watered and water-limited environment. Field Crops Res, 2018, 217: 32-44.
doi: 10.1016/j.fcr.2017.11.003
[6] 郑洪建. 玉米叶片保绿性遗传分析和QTL定位. 上海交通大学博士学位论文, 上海, 2008.
Zheng H J. Genetic Analysis and QTL Mapping of Stay-green Traits in Maize (Zea mays L.). PhD Dissertation of Shanghai Jiaotong University, Shanghai, China, 2008. (in Chinese with English abstract)
[7] Habiba, Xu J, Gad A G, Luo Y, Zheng X. Five OsS40 family members are identified as senescence-related genes in rice by reverse genetics approach. Front Plant Sci, 2021, 12: 701529.
doi: 10.3389/fpls.2021.701529
[8] Harris-Shultz K R, Subudhi P K, Borrell A, Jordan D R, Rosenow D, Nguyen H, Klein P, Klein R R. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot, 2007, 58: 327-338.
doi: 10.1093/jxb/erl225 pmid: 17175550
[9] Chiluwal A, Perumal R, Poudel H P, Muleta K, Ostmeyer T, Fedenia L, Pokharel M, Bean S R, Sebela D, Bheemanahalli R, Oumarou H, Klein P, Rooney W L, Jagadish S V K. Genetic control of source-sink relationships in grain sorghum. Planta, 2022, 255: 40.
doi: 10.1007/s00425-022-03822-5 pmid: 35038036
[10] Tollenaar M, Daynard T B. Leaf senescence in short season maize hybrids. Can J Plant Sci, 1978, 58: 869-874.
doi: 10.4141/cjps78-126
[11] Valentinuz O R, Tollenaar M. Vertical profile of leaf senescence during the grain filling period in older and newer maize hybrids. Crop Sci, 2004, 44: 827-834.
[12] Rodrigues V A, Crusciol C A C, Bossolani J W, Portugal J R, Lollato R P. Foliar nitrogen as stimulant fertilization alters carbon metabolism, reactive oxygen species scavenging, and enhances grain yield in a soybean-maize rotation. Crop Sci, 2021, 61: 3687-3701.
doi: 10.1002/csc2.20587
[13] Hou X, Xue Q, Jessup K E, Zhang Y, Blaser B, Stewart B A, Baltensperger D D. Effect of nitrogen supply on stay-green sorghum in differing post-flowering water regimes. Planta, 2021, 254: 63-74.
doi: 10.1007/s00425-021-03712-2 pmid: 34477992
[14] Sylvester A, Niedziela J C E, Reddy M R. Effect of nitrogen fertilization on stay-green and senescent sorghum hybrids in sand culture. J Plant Nutr, 2010, 33: 185-199.
doi: 10.1080/01904160903434253
[15] 路亚, 李晓亮, 于天一, 周静, 孙学武, 郑永美, 沈浦, 吴正锋, 李林, 王才斌. 持绿和早衰花生品种根系形态、叶片生理及产量对叶面喷施磷肥的响应. 植物营养与肥料学报, 2020, 26: 532-540.
Lu Y, Li X L, Yu T Y, Zhou J, Sun X W, Zheng Y M, Shen P, Wu Z F, Li L, Wang C B. Response of root morphology, leaf physiology and yield of stay-green and presenility types of peanut to foliar phosphorus application. J Plant Nutr Fert, 2020, 26: 532-540. (in Chinese with English abstract)
[16] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362-2370.
pmid: 26685599
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2362-2370. (in Chinese with English abstract)
pmid: 26685599
[17] 侯红乾, 林洪鑫, 刘秀梅, 冀建华, 刘益仁, 蓝贤瑾, 吕真真, 周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响. 作物学报, 2020, 46: 280-289.
doi: 10.3724/SP.J.1006.2020.82060
Hou H Q, Lin H X, Liu X M, Ji J H, Liu Y R, Lan X J, Lyu Z Z, Zhou W J. Influence of long term fertilizer application on chlorophyll fluorescence characteristics and grain yield of double cropping late rice. Acta Agron Sin, 2020, 46: 280-289. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.82060
[18] 王建国, 杜桂娟. 玉米持绿性评价方法的探讨. 辽宁农业科学, 2003, (5): 1-4.
Wang J G, Du G J. Evaluation method of stay-green trait in maize. Liaoning Agric Sci, 2003, (5): 1-4 (in Chinese with English abstract).
[19] Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410.
doi: 10.1093/jxb/erf090 pmid: 12432032
[20] Srivalli S, Khanna-Chopra R. Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem, 2009, 47: 663-670.
doi: 10.1016/j.plaphy.2009.03.015
[21] Hodges D M, Andrews C J, Johnson D A, Hamilton R I. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant, 1996, 98: 685-692.
doi: 10.1111/j.1399-3054.1996.tb06672.x
[22] Amini H, Arzani A, Bahrami F. Seed yield and some physiological traits of safflower as affected by water deficit stress. Int J Plant Prod, 2013, 7: 597-614.
[23] 万鹏, 杜锦, 曹高燚, 苏东伟, 牛巧龙, 向春阳. 施钾量对玉米产量及叶片部分酶活性的影响. 玉米科学, 2016, 24(6): 149-154.
Wan P, Du J, Cao G Y, Su D W, Niu Q L, Xiang C Y. Effects of potassium fertilizer on enzyme efficiency of leaves and yield in spring maize. J Maize Sci, 2016, 24(6):149-154. (in Chinese with English abstract)
[24] 卢庆善. 高粱学. 北京: 中国农业出版社, 1997. p 120.
Lu Q S. Sorghum Science. Beijing: China Agriculture Press, 1997. p 120. (in Chinese)
[25] Johnson S M, Cummins I, Lim F L, Slabas A R, Knight M R. Transcriptomic analysis comparing stay-green and senescent sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait. J Exp Bot, 2015, 66: 7061-7073.
doi: 10.1093/jxb/erv405 pmid: 26320239
[26] 曹寒冰, 谢钧宇, 王楚涵, 强久次仁, 尼玛曲珍, 张杰, 孟会生, 洪坚平, 李廷亮. 不同施肥措施对旱地采煤塌陷区复垦土壤结构及玉米品质的影响. 水土保持学报, 2021, 35(2): 251-257.
Cao H B, Xie J Y, Wang C H, Qiangjiuciren, Nimaquzhen, Zhang J, Meng H S, Hong J P, Li T L. Effects of different fertilization regimes on reclaimed soil structure and maize quality in dryland. J Soil Water Conserv, 2021, 35(2): 251-257. (in Chinese with English abstract)
[27] 董二伟, 王成, 丁玉川, 王劲松, 武爱莲, 王立革, 焦晓燕. 高粱生长及其土壤环境对不同培肥措施的响应. 华北农学报, 2017, 32(2): 217-225.
doi: 10.7668/hbnxb.2017.02.032
Dong E W, Wang C, Ding Y C, Wang J S, Wu A L, Wang L G, Jiao X Y. Response of different fertilizing on growth and soil environment of sorghum. Acta Agric Boreali-Sin, 2017, 32(2): 217-225. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2017.02.032
[28] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 265-268.
Lu R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 265-268. (in Chinese with English abstract)
[29] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[30] Hernandez J A, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ, 2000, 23: 853-862.
doi: 10.1046/j.1365-3040.2000.00602.x
[31] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 165-167.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 165-167. (in Chinese)
[32] Heath R L, Packer L. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acids peroxidation. Arch Biochem Biophys, 1968, 125: 189-198.
doi: 10.1016/0003-9861(68)90654-1 pmid: 5655425
[33] 董宛麟, 于洋, 张立祯, 潘志华, 苟芳, 邸万通, 赵沛义, 潘学标. 向日葵和马铃薯间作条件下氮素的吸收和利用. 农业工程学报, 2013, 29(7): 98-108.
Dong W L, Yu Y, Zhang L Z, Pan Z H, Gou F, Di W T, Zhao P Y, Pan X B. Nitrogen uptake and utilization in sunflower and potato intercropping. Trans CSAE, 2013, 29(7): 98-108. (in Chinese with English abstract)
[34] Brogea N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ, 2002, 81: 45-57.
doi: 10.1016/S0034-4257(01)00332-7
[35] 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响. 中国农业科学, 2014, 47: 655-663.
Zhou Y F, Wang D Q, Lu Z B, Wang N, Wang Y T, Li F X, Xu W J, Huang R D. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum. Sci Agric Sin, 2014, 47: 655-663. (in Chinese with English abstract)
[36] Thomas H, Ougham H J. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[37] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47: 2511-2521.
doi: 10.3724/SP.J.1006.2021.04279
Lu H Q, Tang W, Luo Z, Kong X Q, Li Z H, Xu S Z, Xin C S. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agron Sin, 2021, 47: 2511-2521. (in Chinese with English abstract)
[38] 罗洋, 郑金玉, 郑洪兵, 李瑞平, 李伟堂, 刘武仁, 董英山. 有机无机肥料配合施用对玉米生长发育及产量的影响. 玉米科学, 2014, 22(5): 132-136.
Luo Y, Zheng J Y, Zheng H B, Li R P, Li W T, Liu W R, Dong Y S. Effects of manure and fertilizer application on growth and yield of maize. J Maize Sci, 2014, 22(5): 132-136. (in Chinese with English abstract)
[39] Tolk J A, Howell T A, Miller F R. Yield component analysis of grain sorghum grown under water stress. Field Crops Res, 2013, 145: 44-51.
doi: 10.1016/j.fcr.2013.02.006
[40] Jordan D R, Hunt C H, Cruickshank A W, Borrell A K, Henzellet R G. The relationship between the stay green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci, 2012, 52: 1153-1161.
doi: 10.2135/cropsci2011.06.0326
[41] Christopher J T, Veyradier M, Borrell A K, Harvey G, Fletcher S, Chenu K. Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct Plant Biol, 2014, 41: 1035-1048.
doi: 10.1071/FP14052 pmid: 32481056
[42] George-Jaeggli B, Mortlock M Y, Borrell A K. Bigger is not always better: reducing leaf area helps stay-green sorghum use soil water more slowly. Environ Exp Bot, 2017, 138: 119-129.
doi: 10.1016/j.envexpbot.2017.03.002
[43] Nazir M, Pandey R, Siddiqi T O, Ibrahim M M, Qureshi M I, Abraham G, Vengavasi K, Ahmad A. Nitrogen-deficiency stress induces protein expression differentially in low-N tolerant and low-N sensitive maize genotypes. Front Plant Sci, 2016, 7: 298.
doi: 10.3389/fpls.2016.00298 pmid: 27047497
[44] Erley G S, Begum N, Worku M, Bänziger M, Horst W J. Leaf senescence induced by nitrogen deficiency as indicator of genotypic differences in nitrogen efficiency in tropical maize. J Plant Nutr Soil Sci, 2007, 170: 106-114.
doi: 10.1002/jpln.200625147
[45] Crafts-Brandner S J, Below F E, Wittenbach V A, Harper J E, Hageman R H. Differential senescence of maize hybrids following ear removal. Plant Physiol, 1984, 74: 368-373.
doi: 10.1104/pp.74.2.368 pmid: 16663424
[46] Rajcana I, Dwyerb L M, Tollenaara M. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence. Field Crops Res, 1999, 63: 13-17.
doi: 10.1016/S0378-4290(99)00023-4
[47] 张国伟, 李凯, 李思嘉, 王晓靖, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响. 作物学报, 2022, 48: 529-537.
doi: 10.3724/SP.J.1006.2022.14024
Zhang G W, Li K, Li S J, Wang X J, Yang C Q, Liu R X. Effects of sink-limiting treatments on leaf carbon metabolism in soybean. Acta Agron Sin, 2022, 48: 529-537 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14024
[48] Zhou Y, Wang D, Na W, Yu J, Huang R. Involvement of endogenous abscisic acid and cytokinin in photosynthetic performance of different stay green inbred lines of maize under drought. Int J Agric Biol, 2016, 18: 1067-1074.
[49] 黄瑞冬, 孙璐, 肖木辑, 许文娟, 周宇飞. 持绿型高粱 B35灌浆期对干旱的生理生化响应. 作物学报, 2009, 35: 560-565.
Huang R D, Sun L, Xiao M J, Xu W J, Zhou Y F. Physiological and biochemical responses to drought during filling stage in stay green sorghum B35. Acta Agron Sin, 2009, 35: 560-565. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00560
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[3] 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353.
[4] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[7] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[8] 曲梦雪, 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报, 2022, 48(11): 2945-2952.
[9] 王倩, 刘少雄, 柴晓娇, 李海, 张芬, 陆平, 王瑞云, 刘敏轩. 中国不同省(市、自治区)糯高粱籽粒酚类物质含量差异分析[J]. 作物学报, 2022, 48(10): 2505-2516.
[10] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[11] 方彦杰, 张绪成, 侯慧芝, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜覆土种植和施肥对旱地苦荞耗水特征及产量的影响[J]. 作物学报, 2021, 47(6): 1149-1161.
[12] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[13] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[14] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[15] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .