欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1149-1161.doi: 10.3724/SP.J.1006.2021.01059

• 耕作栽培·生理生化 • 上一篇    下一篇

全膜覆土种植和施肥对旱地苦荞耗水特征及产量的影响

方彦杰, 张绪成*(), 侯慧芝, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁   

  1. 甘肃省农业科学院旱地农业研究所/甘肃省旱作区水资源高效利用重点实验室, 甘肃兰州 730070
  • 收稿日期:2020-07-25 接受日期:2020-12-01 出版日期:2021-06-12 网络出版日期:2021-01-12
  • 通讯作者: 张绪成
  • 基金资助:
    国家自然科学基金项目(31760367);甘肃省农业科学院农业科技创新专项计划(2019GAAS10)

Effects of whole soil-plastic mulching system and fertilization rates on water consumption characteristics and yield of tartary buckwheat in arid land

FANG Yan-Jie, ZHANG Xu-Cheng*(), HOU Hui-Zhi, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning   

  1. Institute of Dry-Land Agriculture, Gansu Academy of Agricultural Sciences/Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
  • Received:2020-07-25 Accepted:2020-12-01 Published:2021-06-12 Published online:2021-01-12
  • Contact: ZHANG Xu-Cheng
  • Supported by:
    The study was supported by the National Natural Science Foundation of China(31760367);The Agricultural Science and Technology Innovation Program of GAAS(2019GAAS10)

摘要:

探究全膜覆土种植和施肥水平对半干旱区旱地苦荞土壤耗水特征和产量的影响, 于2015—2017年连续3年进行定位试验, 全膜覆土种植方式下, 设置高量(N 120 kg hm-2+ P2O5 90 kg hm-2 + K2O 60 kg hm-2, HF)、中量(N 80 kg hm-2+ P2O5 60 kg hm-2 + K2O 40 kg hm-2, MF)、低量(N 40 kg hm-2+ P2O5 30 kg hm-2 + K2O 20 kg hm-2, LF)和零施肥(ZF), 以传统露地种植不施肥为CK, 共5个处理, 以明确全膜覆土种植和施肥对半干旱区苦荞的耗水特性、产量和水分利用效率的影响。结果表明, 苦荞全膜覆土种植后集雨保墒效果明显, 能够改善土壤水分环境, 增加花前贮水, LF能够根据不同降水年型和土壤水分状况调控苦荞花前花后土壤耗水, 在干旱年LF较ZF、MF、HF、CK能够提高苦荞花后土壤贮水量2.8~23.5 mm, 增加花前0~100 cm土层土壤剖面水分耗散量26.3~32.4 mm, 增加生育期总耗水量44.5 mm, 提高耗水模系数、耗水强度, 显著增加成熟期干物质量1.2%~58.8%、灌浆期叶面积指数4.1%~68.5%, 增加单株粒重1.6%~61.6%, 提高籽粒饱满率0.6%~29.2%, 增加生物量1.1%~182.5%, 提高产量1.1%~130.4%, 提高水分利用效率0.3%~102.7%。可见, 旱地苦荞全膜覆土种植低量施肥处理贮水效果明显, 能够达到水肥耦合作用, 且能够根据降水等环境条件调控植株生育期耗水, 显著提高苦荞生物产量、产量和水分利用效率, 是适宜于半干旱区苦荞增产增效的栽培模式。

关键词: 苦荞, 全膜覆土种植, 施肥, 耗水特征, 产量, 水分利用效率

Abstract:

In order to study the effects of whole soil-plastic mulching planting and different fertilization rates on soil water consumption characteristics and yields of tartary buckwheat, a three-year (2015-2017) located experiment was carried out in semi-arid region of east-central Gansu Province, China, under whole soil-plastic mulching planting system. Four fertilization treatments under soil-plastic mulching were accordingly designed, including high application rate (HF, N 120 kg hm-2+ P2O5 90 kg hm-2 + K2O 60 kg hm-2), medium rate (MF, N 80 kg hm-2+ P2O5 60 kg hm-2 + K2O 40 kg hm-2), low rate (LF, N 40 kg hm-2+ P2O5 30 kg hm-2 + K2O 20 kg hm-2), and zero fertilization rate (ZF), whereas ZF with traditional non-mulching planting was set as the control (CK) to illustrate the effects of soil-plastic mulching and fertilization on water consumption characteristics, yields and water use efficiency (WUE) of tartary buckwheat in semi-arid area of China. The results showed that the effects of rainwater collection and soil moisture conservation were obvious after planting tartary buckwheat with whole soil-plastic mulching, which also improved soil water environment and increased pre-anthesis soil water storage (SWS, mm). LF was able to regulate soil water consumption before and after anthesis stage according to different precipitation years and soil moisture conditions. Compared with ZF, MF, HF, and CK in dry years, LF improved post-anthesis SWS by 2.8-23.5 mm and increased crop pre-anthesis water consumption in the 0-100 mm soil profile by 26.3-32.4 mm in tartary buckwheat. As a result, LF increased total crop water consumption in the whole growth period by 44.5 mm, and boosted water consumption module coefficient and intensity. Moreover, compared with ZF, MF, HF and CK, LF treatment increased dry matter weight at maturity stage by 1.2%-58.8%, leaf area index (LAI) at filling stage by 4.1%-68.5%, grain weight per plant by 1.6%-61.6%, plumpness rate by 0.6%-29.2%, biomass yield by 1.1%-182.5%, grain yield by 1.1%-130.4%, and water use efficiency (WUE, kg hm-2 mm-1) by 0.3%-102.7%, respectively. In conclusion, the storage effect of low amount fertilizer treatment for tartary buckwheat planting with whole soil-plastic mulching in dry land was obvious, which could achieve the coupling effects of soil moisture and fertilizer and regulate crop water consumption according to the environmental conditions such as precipitation during crop growth period, and it could significantly improve the biomass yield, grain yield and WUE of tartary buckwheat. Therefore, it was a suitable cultivation mode for yield-increasing and efficiency-boosting of tartary buckwheat in semi-arid area.

Key words: tartary buckwheat, whole soil-plastic mulching planting, fertilization, water consumption, yield, water use efficiency

图1

苦荞生育期降水量和平均气温"

图2

不同生育时期0~300 cm土壤贮水量 同一年度中, 同列的数据后不同字母表示处理间差异显著(P < 0.05); 每个生育时期数据上方的误差线代表LSD0.05; HF: 高量施肥; MF: 中量施肥; LF: 低量施肥; ZF: 零施肥; CK: 对照。"

图3

花前和花后0~300 cm土层土壤剖面耗水量 处理同图2。"

表1

苦荞不同生育阶段耗水量、耗水模系数及耗水强度"

年份Year 处理Treatment 耗水量
Water consumption (mm)
花前Pre-flowering stage 花后Post-flowering stage
耗水量
Water consumption (mm)
耗水模
系数
WCP (%)
耗水强度
DWC
(d mm-1)
耗水量
Water consumption (mm)
耗水模
系数
WCP (%)
耗水强度
DWC
(d mm-1)
2015 CK 419.8 ab 244.6 c 58.3 b 4.6 b 175.2 a 41.7 b 3.0 a
ZF 402.5 b 240.9 c 59.9 b 4.5 b 161.6 b 40.1 b 2.7 b
LF 417.0 ab 273.1 b 65.5 a 5.0 a 143.9 c 34.5 c 2.4 c
MF 410.1 ab 222.4 d 54.2 c 4.0 c 187.7 a 45.8 a 3.2 a
HF 429.7 a 291.1 a 67.7 a 5.5 a 138.6 c 32.3 c 2.3 c
2016 CK 258.6 b 195.9 c 75.8 b 3.8 c 62.7 c 24.2 b 1.5 b
ZF 295.9 a 238.7 a 80.7 a 4.6 a 57.2 c 19.3 c 1.4 c
LF 303.1 a 222.1 b 73.3 b 4.3 b 81.0 a 26.7 a 1.9 a
MF 294.8 a 217.1 b 73.6 b 4.2 b 77.7 a 26.4 a 1.9 a
HF 288.9 a 217.9 b 75.4 b 4.2 b 71.0 b 24.6 b 1.7 b
2017 CK 247.1 c 114.8 c 46.4 d 2.4 c 132.3 b 53.6 a 2.2 b
ZF 287.6 b 121.1 c 42.1 d 2.5 c 166.5 a 57.9 a 2.8 a
LF 237.7 c 132.3 c 55.7 c 2.8 c 105.4 c 44.3 b 1.8 c
MF 336.9 a 249.0 a 73.9 a 5.2 a 87.9 d 26.1 d 1.5 d
HF 287.7 b 191.7 b 66.6 b 4.0 b 96.0 d 33.4 d 1.6 d

表2

不同生育时期苦荞单株干物质积累量"

年份
Year
处理
Treatment
苗期
Seeding stage
分枝期
Branching stage
盛花期
Flowering stage
灌浆
Filling stage
成熟
Maturity stage
2015 CK 0.4 c 1.5 b 3.7 c 8.8 c 11.6 c
ZF 0.7 a 2.7 a 6.1 b 12.3 a 19.2 a
LF 0.6 b 2.8 a 6.4 a 13.1 a 20.1 a
MF 0.6 b 2.8 a 6.6 a 12.3 a 17.8 b
HF 0.6 b 2.8 a 6.5 a 11.5 b 19.0 a
2016 CK 0.2 b 0.6 c 2.6 d 6.1 d 7.3 d
ZF 0.7 a 2.6 b 4.9 c 10.4 c 17.4 a
LF 0.7 a 2.9 b 6.4 a 11.5 a 17.7 a
MF 0.7 a 3.7 a 5.6 b 10.8 b 16.9 b
HF 0.7 a 3.8 a 6.4 a 11.1 a 15.2 c
2017 CK 0.4 d 0.8 c 3.6 c 7.4 c 10.4 c
ZF 0.6 c 2.2 b 5.5 b 10.5 b 17.5 b
LF 1.0 a 2.4 a 6.7 a 11.5 a 19.0 a
MF 0.9 b 2.5 a 5.6 b 11.2 a 18.8 a
HF 1.0 a 2.6 a 6.4 a 10.8 b 17.5 b

表3

年份、全膜覆土种植和施肥水平对单株干物质量的方差分析"

项目
Item
变异来源
Source of variation
F
F-value
P
P-value
盛花期干物质
Dry matter at flowering stage
年份Year (A) 11.8 0.0002
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
102.1 0.0001
A×B 2.4 0.0387
成熟期干物质
Dry matter at maturity stage
年份Year (A) 75.6 0.0001
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
353.8 0.0001
A×B 6.2 0.0001

表4

不同生育时期苦荞叶面积指数"

年份
Year
处理
Treatment
分枝期
Branching stage
盛花期
Flowering stage
灌浆期
Filling stage
成熟期
Maturity stage
2015 CK 2.1 c 4.8 c 3.2 c 2.2 c
ZF 3.0 b 5.0 c 4.7 b 3.3 b
LF 3.3 a 5.5 b 5.3 a 3.7 a
MF 3.6 a 6.3 a 5.1 a 3.6 a
HF 3.2 a 6.2 a 4.7 b 3.3 b
2016 CK 1.0 c 1.5 c 1.8 c 1.1 c
ZF 1.8 b 4.2 b 3.2 a 1.9 a
LF 1.9 b 4.6 a 3.4 a 2.0 a
MF 2.3 a 4.6 a 3.3 a 1.6 b
HF 2.3 a 4.8 a 3.2 a 1.9 a
2017 CK 1.3 d 2.2 c 1.5 b 1.2 c
ZF 2.5 c 3.8 b 4.6 a 3.6 b
LF 3.2 b 5.6 a 4.8 a 3.9 a
MF 3.9 a 5.5 a 4.5 a 3.6 b
HF 3.0 b 5.5 a 4.6 a 3.6 b

表5

对苦荞产量、水分利用效率及收获指数的影响"

年份
Year
处理Treatment 成穗数
Ear number
(plant hm-2)
单株粒重
Grain weight per plant (g)
籽粒饱满率
Full grain yield
(%)
产量
Yield
(kg hm-2)
生物量
Biomass
(kg hm-2)
水分利用效率
WUE
(kg hm-2 mm-1)
收获指数
Harvesting index
(%)
2015 CK 185.4 a 3.3 d 78.1 b 2077.2 d 21,620.6 b 4.9 d 8.5 a
ZF 178.3 a 6.1 b 82.9 b 2687.1 a 34,251.1 a 6.7 a 7.9 b
LF 175.2 a 7.1 a 89.2 a 2774.7 a 35,193.8 a 6.7 a 7.9 b
MF 188.2 a 6.2 b 63.2 d 2487.0 b 33,518.4 a 6.1 b 7.4 c
HF 183.4 a 5.3 c 70.6 c 2367.9 c 34,801.0 a 5.5 c 6.8 d
2016 CK 161.6 b 2.2 b 49.9 b 936.7 c 11,788.1 c 3.6 c 8.0 a
ZF 176.3 a 5.2 a 56.9 a 2133.9 a 30,742.3 b 7.2 a 6.9 b
LF 188.2 a 5.3 a 57.3 a 2158.2 a 33,299.4 a 7.1 a 6.5 b
MF 173.7 a 5.0 a 49.2 b 2021.0 a 29,393.4 b 6.9 a 7.0 b
HF 183.4 a 5.2 a 45.4 b 1654.2 b 27,881.9 b 5.7 b 5.9 c
2017 CK 174.5 b 2.5 d 70.4 b 1391.2 d 18,154.2 c 5.6 c 7.7 a
ZF 190.4 a 5.5 b 76.9 a 2211.6 b 33,334.5 b 7.7 b 6.6 b
LF 203.3 a 6.4 a 80.6 a 2712.8 a 38,699.8 a 11.4 a 7.0 b
MF 187.6 a 5.6 b 61.8 c 2371.7 b 35,298.6 b 7.0 b 6.8 b
HF 198.1 a 4.7 c 63.8 c 2105.8 c 34,609.6 b 7.3 b 6.1 c

表6

年份、全膜覆土种植和施肥水平对产量、生物量、水分利用效率(WUE)、收获指数的方差分析"

项目
Item
变异来源
Source of variation
F
F-value
P
P-value
产量
Yield
年份Year (A) 119.2 0.0001
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
101.5 0.0001
A×B 5.5 0.0002
生物量
Biomass
年份Year (A) 27.1 0.0001
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
93.6 0.0001
A×B 1.9 0.1024
水分利用效率
WUE
年份Year (A) 51.2 0.0001
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
54.9 0.0001
A×B 9.1 0.0001
收获指数
Harvesting index
年份Year (A) 7.9 0.0017
全膜覆土种植和施肥水平
Whole soil-plastic mulching with planting and fertilizer level (B)
8.1 0.0001
A×B 0.4 0.9340
[1] 杨文治, 邵明安. 黄土高原土壤水分硏究. 北京: 科学出版社, 2000. pp 1-3.
Yang W Z, Shao M A. Study on Soil Moisture in Loess Plateau. Beijing: Science Press, 2000. pp 1-3(in Chinese).
[2] 冯佰利, 姚爱华, 高金峰, 高小丽, 柴岩. 中国荞麦优势区域布局与发展研究. 中国农学通报, 2005,21(3):375-377.
Feng B L, Yao A H, Gao J F, Gao X L, Chai Y. Study on regional distribution and development of buckwheat in china. Chin Agric Sci Bull, 2005,21(3):375-377 (in Chinese with English abstract).
[3] 于显枫, 张绪成, 王红丽, 马一凡, 侯慧芝, 方彦杰. 施肥对旱地全膜覆盖垄沟种植马铃薯耗水特征及产量的影响. 应用生态学报, 2016,27:883-890.
Yu X F, Zhang X C, Wang H L, Ma Y F, Hou H Z, Fang Y J. Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridgefurrow and whole filed plastic mulching in rainfed area. Chin J Appl Ecol, 2016,27:883-890 (in Chinese with English abstract).
[4] 薛澄, 王朝辉, 李富翠, 赵护兵, 周玲, 李小涵. 渭北旱塬不同施肥与覆盖栽培对冬小麦产量形成及土壤水分利用的影响. 中国农业科学, 2011,44:4395-4405.
Xue C, Wang Z H, Li F C, Zhao H B, Zhou L, Li X H. Effects of different fertilization and mulching cultivation methods on yield and soil water use of winter wheat on Weibei dryland. Sci Agric Sin, 2011,44:4395-4405 (in Chinese with English abstract).
[5] 樊廷录. 提高黄土高原旱地抗逆减灾能力的肥定位试验研究. 水土保持研究, 2003,10(1):6-8.
Fan T L. Fixed fertilization experiment on stress tolerance and reducing disasters in dryland of loess plateau. Res Soil Water Conserv, 2003,10(1):6-8 (in Chinese with English abstract).
[6] Li F M, Guo A H, Wei H. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res, 1999,63:79-86.
[7] 侯慧芝, 高世铭, 张绪成, 王德贵. 旱地全膜覆土穴播春小麦的耗水特征及其对产量的影响. 水土保持学报, 2017,31(1):202-210.
Hou H Z, Gao S M, Zhang X C, Wang D G. Effects of soil-plastic mulching on water consumption characteristics and grain yield of spring wheat in semiarid region. J Soil Water Conserv, 2017,31(1):202-210 (in Chinese with English abstract).
[8] Wang Y J, Xie Z K, Malhi S S, Vera C L, Zhang Y B, Wang J N. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agric Water Manage, 2009,96:374-382.
[9] 王红丽, 宋尚有, 张绪成, 高世铭, 于显枫, 马一凡. 半干旱区旱地春小麦全膜覆土穴播对土壤水热效应及产量的影响. 生态学报, 2013,33:5580-5588.
Wang H L, Song S Y, Zhang X C, Gao S M, Yu X F, Ma Y F. Effects of using plastic film as mulch combined with bunch planting on soil temperature, moisture and yield of spring wheat in a semi-arid area in drylands of Gansu, China. Acta Ecol Sin, 2013,33:5580-5588 (in Chinese with English abstract).
[10] 侯慧芝, 吕军峰, 郭天文, 张国平, 董博, 张绪成. 旱地全膜覆土穴播对春小麦耗水、产量和土壤水分平衡的影响. 中国农业科学, 2014,47:4392-4404.
Hou H Z, Lyu J F, Guo T W, Zhang G P, Dong B, Zhang X C. Effects of whole field soil-plastic mulching on spring wheat water consumption, yield, and soil water balance in semiarid region. Sci Agric Sin, 2014,47:4392-4404 (in Chinese with English abstract).
[11] 杨长刚, 柴守玺, 常磊, 杨德龙. 不同覆膜方式对旱作冬小麦耗水特性及籽粒产量的影响. 中国农业科学, 2015,48:661-671.
Yang C G, Chai S X, Chang L, Yang D L. Effects of plastic mulching on water consumption characteristics and grain yield of winter wheat in arid region of northwest China. Sci Agric Sin, 2015,48:661-671 (in Chinese with English abstract).
[12] 宋婷, 王红丽, 陈年来, 张绪成. 旱地全膜覆土穴播和全沙覆盖平作对小麦田土壤水分和产量的调节机理. 中国生态农业学报, 2014,22:1174-1181.
Song T, Wang H L, Chen N L, Zhang X C. Regulation of whole field soil-plastic mulching with bunch planting and whole field sand mulching with flat planting on soil moisture and yield of spring wheat in semiarid dryland areas. Chin J Eco-Agric, 2014,22:1174-1181 (in Chinese with English abstract).
[13] 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡. 旱地全膜覆土穴播荞麦田土壤水热及产量效应研究. 作物学报, 2019,45:1073-1082.
Fang Y J, Zhang X C, Yu X F, Hou H Z, Wang H L, Ma Y F. Effects of whole soil-plastic mulching with hole-sowing on soil temperature, moisture and yield of buckwheat in arid-lands. Acta Agron Sin, 2019,45:1073-1082 (in Chinese with English abstract).
[14] 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡. 施肥对半干旱区旱地全膜覆土穴播苦荞产量及水肥利用率的影响. 中国农业科技导报, 2020,22(9):143-152.
Fang Y J, Zhang X C, Yu X F, Hou H Z, Wang H L, Ma Y F. Impacts of fertilization on yield and water-fertilizer use efficiency of Tartary buckwheat with whole field soil-plastic mulching in semiarid area. J Agric Sci Technol, 2020,22(9):143-152 (in Chinese with English abstract).
[15] 常磊, 韩凡香, 柴雨葳, 包正育, 程宏波, 黄彩霞, 杨德龙, 柴守玺. 秸秆带状覆盖对半干旱雨养区冬小麦耗水特征和产量的影响. 应用生态学报, 2019,30:4150-4158.
Chang L, Han F X, Chai Y W, Bao Z Y, Cheng H B, Huang C X, Yang D L, Chai S X. Effects of bundled straw mulching on water consumption characteristics and grain yield of winter wheat in rain-fed semiarid region. Chin J Appl Ecol, 2019,30:4150-4158 (in Chinese with English abstract).
[16] 张仁陟, 李小刚, 胡恒觉. 施肥对提高旱地农田水分利用效率的机理. 植物营养与肥料学报, 1999,5:221-226.
Zhang R Z, Li X G, Hu H J. The mechanism of fertilization in increasing water use efficiency. Plant Nutr Fert Sci, 1999,5:221-226 (in Chinese with English abstract).
[17] 廖佳丽. 水肥管理对旱地马铃薯生长和水分利用效率及土壤肥力的影响. 西北农林科技大学硕士学位论文,陕西杨凌, 2009.
Liao J L. Effect of Water and Fertilizers Managing on Potato Growth and WUE and Soil Fertility in Dry Land. MS Thesis of Northwest A&F University, Yangling, Shaanxi,China, 2009 (in Chinese with English abstract).
[18] 刘恩科, 赵秉强, 胡昌浩, 刘秀英, 张夫道. 长期不同施肥制度对玉米产量和品质的影响. 中国农业科学, 2004,37:711-716.
Liu E K, Zhao B Q, Hu C H, Liu X Y, Zhang F D. Effects of long-term fertilization systems on yield and quality of maize. Sci Agric Sin, 2004,37:711-716 (in Chinese with English abstract).
[19] 樊军, 郝明德, 邵明安. 黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应. 农业工程学报, 2004,20(1):61-64.
Fan J, Hao M D, Shao M A. Water consumption and eco-environmental effects in deep soil layers of agro- ecosystem in Loess Plateau. Trans CSAE, 2004,20(1):61-64 (in Chinese with English abstract).
[20] Fan T L, Stewart B A, Wang Y, Luo J J, Zhou G Y. Long-term fertilization effects on grain yield, water use efficiency and soil fertility in the dryland of Loess Plateau in China. Agric Ecosyst Environ, 2005,106:313-329.
[21] 李生秀. 中国旱地农业. 北京: 中国农业出版社, 2004. p 22.
Li S X. Dryland Agriculture in China. Beijing: China Agriculture Press, 2004. p 22 (in Chinese).
[22] 马强, 宇万太, 沈善敏, 张璐. 旱地农田水肥效应研究进展. 应用生态学报, 2007,18:665-673.
Ma Q, Yu W T, Shen S M, Zhang L. Research advances in water-fertilizer effect on dry land farmland. Chin J Appl Ecol, 2007,18:665-673 (in Chinese with English abstract).
[23] 关事成. 覆膜和施肥对黄土高原半干旱区玉米产量及农田土壤呼吸的影响. 兰州大学硕士学位论文,甘肃兰州, 2018.
Guan S C. Effects of Plastic Film Mulching and Fertilization on Maize Yield and Soil Respiration in Semi-arid Area of Loess Plateau. MS Thesis of Lanzhou University, Lanzhou, Gansu,China, 2018 (in Chinese with English abstract).
[24] 任小龙, 贾志宽, 陈小莉. 不同模拟雨量下微集水种植对农田水肥利用效率的影响. 农业工程学报, 2010,26(3):75-81.
Ren X L, Jia Z K, Chen X L. Effect of micro-catchment rainwater harvesting on water and nutrient use efficiency in farmland under different simulated rainfall conditions. Trans CSAE, 2010,26(3):75-81 (in Chinese with English abstract).
[25] Qin S H, Zhang J L, Dai H L, Wang D, Li D M. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric Water Manege, 2014,131:87-94.
[26] 张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中, 王淑英, 程万莉. 覆膜时期与施氮量对旱地玉米土壤耗水特征及产量的影响. 水土保持学报, 2018,32(6):72-78.
Zhang J J, Fan T L, Dang Y, Zhao G, Wang L, Li S Z, Wang S Y, Cheng W L. Effect of film mulching period and nitrogen application rate on soil water consumption characteristics and maize yield in dryland. J Soil Water Conserv, 2018,32(6):72-78 (in Chinese with English abstract).
[27] Zhang X D, Kamran M, Xue X K, Zhao J, Cai T, Jia Z K, Zhang P, Han Q F. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize productivity in the loess plateau of china. Soil Till Res, 2019,190:10-21.
[28] 张平良, 郭天文, 李书田, 刘晓伟, 曾俊. 不同覆盖种植方式与平衡施肥对马铃薯产量及水分利用效率的影响. 干旱地区农业研究, 2017,35(1):50-54.
Zhang P L, Guo T W, Li S T, Liu X W, Zeng J. Effects of different coverage cultivation and balanced fertilization on yield and water use efficiency of potato in the dry-land. Agric Res Arid Areas, 2017,35(1):50-54 (in Chinese with English abstract).
[29] 连延浩, 王天露, 张旭东, 贾志宽, 刘启, 韩清芳. 氮磷肥配施促进半干旱区沟垄集雨种植谷子节水增产. 农业工程学报, 2016,32(23):106-115.
Lian Y H, Wang T L, Zhang X D, Jia Z K, Liu Q, Han Q F. Suitable ratio of nitrogen and phosphorus application under ridge and furrow rainfall harvesting system improving water use efficiency and yield of foxtail millet in semi-arid area. Trans CSAE, 2016,32(23):106-115 (in Chinese with English abstract).
[30] Teixeira E I, George M, Herreman T, Brown H, Fletcher A, Chakwizira E, Ruiter J D, Maley S, Noble A. The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Res, 2014,168:109-118.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!