Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (06): 965-974.doi: 10.3724/SP.J.1006.2011.00965
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Le1,JIN Long-Guo1,LUO Ling1,WANG Yue-Ping1,DONG Zhi-Min1,SUN Shou-Hong2,QIU Li-Juan1,*
[1]Carlini D B, Stephan W. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics, 2003, 163: 239–243 [2]Sharp P M, Matassi G. Codon usage and genome evolution. Curr Opin Genet Dev, 1994, 4: 851–860 [3]Stenico M, Lloyd A T, Sharp P M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucl Acid Res, 1994, 22: 2437–2446 [4]Olejniczak M, Uhlenbeck O C. tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochinmie, 2006, 88: 943–950 [5]Holmouist G P, Flipske J. Organization of mutations along the genome: a prime determinant of genome evolution. Trends Ecol Evol, 1994, 9: 65–69 [6]Bernard I G. The human genome: Organization and evolutionary history. Annu Rev Genet, 1995, 29: 445–476 [7]Shi X-F(石秀凡), Huang J-F(黄京飞), Liu S-Q(柳树群), Liu C-Q(刘次全). The feature of synonymous codon bias and GC-content relationship in human genes. Prog Biochem Biophys (生物化学与生物物理进展), 2002, 29(3): 411–414 (in Chinese with English abstract) [8]Xia X. Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene, 2005, 345: 13–20 [9]Chen S L, Lee W, Hottes A K, Shapiro L, McAdams H H. Codon usage between genomes is constrained by genome-wide mutational processes. Pro Natl Acad Sci, 2004, 101: 3480–3485 [10]Romero H, Zavala A, Musto H, Bernaerdi G. The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene, 2003, 317: 141–147 [11]Moriyama E N, Powell J R. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cervisiae and Escherichia coli. Nucl Acids Res, 1998, 26: 3188–3193 [12]Knight R D, Freeland S J, Landweber L F. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol, 2001, 2: RESERCH0010 [13]Gupta S K, Majumdar S K, Bhattacharya T, Ghosh T C. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochem Biophys Res Commun, 2000, 269: 692–696 [14]Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molr Biol Evol, 1994, 11: 725–736 [15]Schmidt W. Phylogeny reconstruction for protein sequences based on amino acid properties. J Mol Evol, 1995, 41: 522–530 [16]Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Rep, 1991, 9: 208–218 [17]Jeremy S, Steven B C, Jessica S, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q J, Thelen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakarai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Abernathy B, Du J C, Tian Z X, Zhu L C, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozak K, Nguyen H T, Wing R A, Cregan P, Specht J, Crimwood J, Rokhsar D, Stavey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178–183 [18]Cao H-Y(曹慧颖), Zhang R(张锐), Guo S-D(郭三堆). High level expression of human thymosin α1 concatemer in transgenic tomato plants. Sci Agric Sin (中国农业科学), 2009, 42(7): 2291–2296 (in Chinese with English abstract) [19]Zou Y-M(邹永梅), Shi J-S(施季森), Zhu-Ge Q(诸葛强), Huang M-R(黄敏仁). Reacting the silencing genes in the transgenic plants. Mol Plant Breed (分子植物育种), 2006, 4(1): 95–102 (in Chinese with English abstract) [20]Dong Z-M(董志敏), Li Y-H(李英慧), Zhang B-S(张宝石), Guan R-X(关荣霞), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). An improved SMART method to construction full-length cDNA library for large clones. Soybean Sci (大豆科学), 2006, (5): 1-4 (in Chinese with English abstract) [21]Wang Y-P(王跃平), Li Y-H(李英慧), Chen X-T(陈雄庭), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Construction and characterization of the filling stage’s seed cDNA library from Suinong14 (Glycine max). Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 40–45 (in Chinese with English abstract) [22]Sharp P M, Haney T M F, Mosurski K R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucl Acids Res, 1986, 14: 5125–5143 [23]Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion, 2004, 4: 313–320 [24]Sau K, Gupta S K, Sau S, Mandal S C, Ghosh T C. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85: 107–113 [25]Wright F. The effective number of codons used in a gene. Gene, 1990, 87: 23–29 [26]Gupta S K, Bhattacharyya T K, Ghosh T C. Synonymous codon usage in lactococcus lactis: mutational bias versus translational selection. Biomol Struct Dyn, 2004, 21: 1–9 [27]Peixoto L, Zavala A, Romero H, Musto H. The strength of translational selection for codon usage varies in three relicons of Sinorhizobium melioti. Gene, 2003, 320: 109–116 [28]Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucl Acids Res, 2000, 28: 2084–2090 [29]Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabdits, Drosophila, and Arabidopsis. Proc Natl Acad Sci, 1999, 96: 4482–4487 [30]Sharp P M, Li W H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucl Acids Res, 1987, 15: 1281–1295 [31]Wei C, Brent M R. Using ESTs to improve the accuracy of de novo gene prediction. BMC Bioinformatics, 2006, 7: 327-337 [32]Kwan A L, Li L, Kulp D C, Dutcher S K, Stormo G D. Improving gene-finding in Chlamydomonas reinhardtii Green Genie2. BMC Genomics, 2009, 10: 210–220 [33]Sharp P M, Cowe E, Higgins D G, Shield D C, Wolfe K H, Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucl Acids Res, 1988, 16: 8207–8211 [34]Stoletzki N, Eyre-Walker A. Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol, 2007, 24: 374–381 [35]Morton B R, Wright S I. Selective constraints on codon usage of nuclear genes from Arabidopsis thaliana. Mol Biol Evol, 2007, 24: 122–129 [36]Cutter A D, Wasmath J D, Blaxter M L. The evolution of biased codon and amino acid usage in nematode genomes. Mol Biol Evol, 2006, 23: 2303–2315 [37]Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. PNAS, 1999, 96: 4482–4487 [38]Vicario S, Mason C E, White K P, Powell J R. Developmental stage and level of codon usage bias in drosophila. Mol Biol Evol, 2008, 25: 2269–2277 [39]D’Onofrio G, Mouchiroud D, Aissani B, Gautier C, Bernardi G. Correlations between the compositional properties of human genes, codon usage, and amino acid composition of proteins. J Mol Evol, 1991, 32: 504–510 [40]Moriyama E N, Powell J R. Codon usage bias and tRNA abundance in Drosophila. J Mol Evol, 1997, 45: 514–523 [41]Holmquist G P, Filipski J. Organization of mutations along the genome: a prime determinant of genome evolution. Trends Ecol Evol, 1994, 9: 65–69 [42]Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S R, Greenplate J T, Fischhoff D A. Insect resistant cotton plants. Biol Technol, 1990, 8: 939–943 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168. |
[6] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[7] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[8] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[9] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[10] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[11] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[12] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[13] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[14] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[15] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
|