Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (06): 955-964.doi: 10.3724/SP.J.1006.2011.00955

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Fine Mapping of a Semidwarf Gene iga-1 in Rice

GUO Tao,HUO Xing**,RAO De-Hua,LIU Yong-Zhu,ZHANG Jian-Guo,CHEN Zhi-Qiang,WANG Hui*   

  1. South China Agricultural University, National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, China
  • Received:2010-10-27 Revised:2010-03-06 Online:2011-06-12 Published:2011-04-12

Abstract: A semidwarf gene iga-1 of rice (Oryza sativa L.) by mutagenesis of outer space treatment from Texianzhan 13 was identified. The dwarf lines CHA-2 and CHA-2N which carried iga-1 showed great variation in agronomic traits. On the basis of the internode length of CHA-2 and CHA-2N, the mutant belongs to the dn type of dwarfing. GA3 treatment, endo-GA3 measurement and α-amylase activity analysis in endosperm showed that iga-1 is independent of gibberellin acid. Using a large F2 population derived from a cross between the CHA-2 and an japonica rice variety, 02428, the iga-1 gene was fine mapped into a 32.01 kb physical distance between two InDel markers, DL18 and DL19 on chromosome 5, where five open reading frames were predicted, one of which was the rice gibberellin-insensitive dwarf mutant gene D1. Sequence analysis showed that no variation in D1 locus was detected among CHA-2, CHA-2N and Texianzhan 13. Thus, D1 can not be the candidate gene of iga-1. Comparing the other dwarf genes on chromosome 5 showed that iga-1 is possibly allelic to the semidwarf gene sd-7.

Key words: Rice, Semidwarf mutant, iga-1, Fine mapping

[1]Silverstone A L, Sun T. Gibberellins and the green revolution. Trends Plant Sci, 2000, 5: 1-2
[2]Parnell F R, Rangswani G N, Ayyanggar C R S. The inheritance of characters in rice. Agric India Bot Ser, 1922, 11: 185-208
[3]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 17: 1-18
[4]Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet Syst, 2005, 80: 1-6
[5]Chang T T. Genetics and breeding. In: Westport. Rice: Production and Utilization. Connecticut: AVI Press, 1980. pp 146-187
[6]Wilhelm R. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531
[7]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164
[8]Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellins-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-712
[9]Hedden P, Phillips A L. Gibberellins metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530
[10]Tomoaki S, Koutarou M, Hironori I, Tomoko T, Miyako U T, Kanako I, Masatomo K, Ganesh K A, Shin T, Kiyomi A, Akio M, Hirohiko H, Hidemi K, Motoyuki A, Makoto M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642-1653
[11]Grennan A K. Gibberellin metabolism enzymes in rice. Plant Physiol, 2006, 141: 524-526
[12]Sun T, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004, 55: 197-223
[13]Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251
[14]Gomi K, Matsuoka M. Gibberellin signalling pathway. Curr Opin Plant Biol, 2003, 6:489-493
[15]Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA, 1999, 96: 7575-7580
[16]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155
[17]Hartweck L M, Olszewski N E. Rice gibberellin insensitive Dwarf1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell, 2006, 18: 278-82
[18]Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634
[19]Rao D-H(饶得花), Guo T(郭涛), Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of a semidwarf mutant in indica rice and the response to gibberellin. J South China Agric Univ (华南农业大学学报), 2009, 30(1): 19-22 (in Chinese with English abstract)
[20]ang H (王慧), Liu Y-Z (刘永柱), Zhang J-G (张建国), Chen Z-Q (陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci (中国水稻科学), 2004, 18(5): 391-395 (in Chinese with English abstract)
[21]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-114
[22]Xie J(谢君), Zhang Y-Z(张义正). Determination of plant intrinsic hormones by reversed-phase high-performance liquid chromatography. J Instrumental Anal (分析测试学报), 2001, 20(1): 60-62 (in Chinese with English abstract)
[23]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325
[24]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205
[25]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[26]Lin H-X(林鸿宣), Xiong Z-M(熊振民), Min S-K(闵绍楷), Yu G-L(俞桂林), Zhu X-D(朱旭东). The responses of semidwarf rice lines to gibberellic acid. Chin J Rice Sci (中国水稻科学), 1991, 5(1): 13-18 (in Chinese with English abstract)
[27]Song P(宋平), Cao X-Z(曹显祖), Wu Y-H(吴永宏), Zhu X-H(朱晓红), Liang J-S(梁建生). Regulation of gibberell in-binding proteins on dwarfism of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 1996, 22(6): 652-656 (in Chinese with English abstract)
[28]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘Green revolution’. Breed Sci, 2002, 52: 143-150
[29]Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin regulated expression of a myb gene in barley aleurone cells: Evidence for Myb transactivation of a high-pl α-amylase gene promoter. Plant Cell, 1995, 7: 1879-1891
[30]Zhu L-H(朱立宏), Gu M-H(顾铭洪), Xue Y-L(薛元龙). Inheritance of dwarf stature in Oryza sativa L. subsp. hsien and its utilization. J Nanjing Agric Univ (南京农业大学学报), 1980, 2: 1-7 (in Chinese with English abstract)
[31]Chang T T, Zuro C, Marciano-Romena A, Loresto G C. Semidwarf in rice germplasm collections and their potentials in rice improvement. Phytobreedon, 1985, 1: 1-42
[32]Foster K W, Rutger J N. Inheritance of semidwarfism in rice. Oryza sativa L. Genetics, 1978, 88: 559-574
[33]Mackill D J, Rutger J N. The inheritance of induced-mutant semidwarfing gene in rice. J Hered, 1979, 70: 335-341
[34]McKenzie K S, Rutger J N. A new semidwarf mutants in a large grain rice cultivar. Crop Sci, 1986, 26: 81-84
[35]Xu J-L(徐建龙), Li C-S(李春寿), Wang J-M (王俊敏), Luo R-T (骆荣挺), Zhang M-X (张铭铣). Screening and identification of tillering dwarf mutant of rice induced by space environment. Acta Agric Nucl Sin (核农学报), 2003, 17(2): 90-94 (in Chinese with English abstract)
[36]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591-606
[37]Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32: 495-508
[38]Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in Brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790
[39]Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243-54
[40]Kotaro M, Masakazu A, Hidemi K, Atsushi Y, Makoto M, Steven E J, Motoyuki A. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci USA, 2009, 106: 11218-11223
[41]Tsai K H. An induced dwarfing gene, sd-7(t), obtained in Taichung 65. Rice Genet Newslr, 1989, 6: 99-101
[42]Tsai K H. Tight linkage of gene sd-7(t) and d1 found in a cross of Taichung 65 isogenic lines. Rice Genet Newsl, 1991, 8: 104
[43]Liang C Z, Gu M H, Pan X B, Liang G H, Zhu L H. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet, 1994, 88: 898-900
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!