Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (11): 2024-2033.doi: 10.3724/SP.J.1006.2012.02024
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Chang-Ning1,2,NONG Qian1,TAN Qin-Liang1,SRIVASTAVA Manoj Kumar2,YANG Li-Tao1,2,LI Yang-Rui1,2,*
[1]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotincontaining carboxylases. Arch Biochem Biophys, 2003, 414: 211-222[2]Falk K L, Vogel C, Textor S, Bartram S, Hick A, Pickett J A, Gershenzon J. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65: 1073-1084[3]Klumppa S, Bechmanna G, Mäurera A, Selkea D, Krieglsteinb J. ATP-citrate lyase as a substrate of protein histidine phosphatase in vertebrates. Biochem Biophys Res Commun, 2003, 306: 110-115[4]Takahashi H, McCaffery J M, Irizarry R A, Boeke J D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell, 2006, 23: 207-217[5]Wellen K E, Hatzivassiliou G, Sachdeva U M, Bui T V, Cross J R, Thompson C B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324: 1076-1080[6]Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K. hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell, 2002, 14: 1017-1031[7]Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta, 2003, 1632: 1-15[8]Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E. Volatile ester formation in roses: identification of an acetyl-coenzyme A geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiol, 2003, 131: 1868-1876[9]Son H, Lee J, Park A R, Lee Y W. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol, 2011, 48: 408-417[10]Schwender J, Ohlrogge J B. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361[11]Schwender J, Ohlrogge J B, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem, 2003, 278: 29442-29453[12]Hynes M J, Murray S L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryotic cell, 2010, 9: 1039-1048[13]Fatland B L, Ke J, Anderson M D, Mentzen W I, Cui L W, Allred C C, Johnston J L, Nikolau B J, Wurtele E S. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol, 2002, 130: 740-756[14]Fatland B L, Nikolau B J, Wurtele E S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell, 2005, 17: 182-203[15]Fu S-X(付三雄), Qi C-K(戚存扣). Identification of genes differentially expressed in seeds of Brassica napus planted in Nanjing and Lhasa by Arabidopsis microarray. Chin Bull Bot (植物学报), 2009, 44(2): 178-184 (in Chinese with English abstract)[16]Wang S-Y(王树源), Chen J-M(陈健美), Qi W-C(戚维聪), Tian L-L(田琳琳), Guan R-Z(管荣展). Correlation between ATP-citrate lyase activity and seed oil content of canola lines. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31: 279-284 (in Chinese with English abstract)[17]Zhao J(赵检), Wang X-Y(王旭颖), Wang M-L(王茂淋), Zheng S-X(郑世学), Yu Z-N(喻子牛), Zhang J-B(张吉斌). Cloning, expression and characteristics of ATP: citrate lyase from Rhodotorula glutinis. Chem Bioengin (化学与生物工程), 2011, 28: 44-48 (in Chinese with English abstract)[18]Calsa Jr T, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.). Plant Mol Biol, 2007, 63: 745-762[19]Rocha F R, Papini-Terzi F S, Nishiyama M Y Jr, Vêncio R Z, Vicentini R, Duarte R D, de Rosa V E Jr, Vinagre F, Barsalobres C, Medeiros A H, Rodrigues F A, Ulian E C, Zingaretti S M, Galbiatti J A, Almeida R S, Figueira A V, Hemerly A S, Silva-Filho M C, Menossi M, Souza G M. Signal transduction-related re sponses to phytohormones and environmental challenges in sugarcane. BMC Genomics, 2007, 8: 71[20]Iskandar H M, Casu R E, Fletcher A T, Schmidt S, Xu J, Maclean D J, Manners J M, Bonnett G D. Identification of drought-response genes and a expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol, 2011, 11: 12[21]Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxyllammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616-620[22]Yang Y, Costa A, Leonhardt N, Siegel R S, Schroeder J I. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods, 2008, 4: 6[23]Zeller G, Henz S R, Widmer C K, Sachsenberg T, Rätsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068-1082[24]Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol, 2011, 52: 689-698[25]Takeuchi A, Yamaguchi M, Uritani I. ATP citrate lyase from Ipomoea batatas root tissue infected with Ceratocystis fimbriata, Phytochemistry, 1981, 20: 1235-1239[26]Chávez-Cabrera C, Flores-Bustamante Z R, Marsch R, Montes Mdel C, Sánchez S, Cancino-Díaz J C, Flores-Cotera L B. ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol, 2010, 85: 1953-1960[27]Jiang M Y, Zhang J H. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410[28]Li C-N(李长宁), Srivastava M K, Nong Q(农倩), Li Y-R(李杨瑞). Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agron Sin (作物学报), 2010, 36(5): 863-870 (in Chinese with English abstract)[29]Tabuchi A, Funaji K, Nakatsubo J, Fukuchi M, Tsuchiya T, Tsuda M. Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization. J Neurosci Res, 2003, 71: 504-515[30]Mailloux R J, Bériault R, Lemire J, Singh R, Chénier D R, Hamel R D, Appanna V D. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One, 2007, 2: e690[31]Baxter C J, Redestig H, Schauer N, Repsilber D, Patil K R, Nielsen J, Selbig J, Liu J, Fernie A R, Sweetlove L J. The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol, 2007, 143: 312-325[32]Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol, 2009, 71: 403-423[33]Neumann G, Römmheld V. Root excretion of carboxylic acids and protons in phosphorous deficient plants. Plant Soil, 1999, 211: 121-130[34]Neumann G, Martinoia E. Cluster roots-an underground adaptation for survival in extreme environments. Trends Plant Sci, 2002, 7: 162-167[35]Kanao T, Fukui T, Atomi H, Imanaka T. ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. Eur J Biochem, 2001, 268: 1670-1678[36]Kim W, Tabita F R. Both subunits of ATP-citrate lyase from Chlorobium tepidum contribute to catalytic activity. J Bacteriol, 2006, 188: 6544-6552 |
No related articles found! |
|