Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1234-1244.doi: 10.3724/SP.J.1006.2017.01234


Correlation between Hardness and Dry-matter Content of Storage Root in Sweetpotato[Ipomoea batatas (L.)Lam.]

TANG Dao-Bin1,2,AN Jian-Gang2,DING Yi2,BAI Hui2,ZHANG Kai2, LYU Chang-Wen2,FUTi-Hua1,*,WANG Ji-Chun2,*   

  1. 1College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;2College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University/Sweetpotato Engineering and Technology Research Center, Chongqing, 400716,China
  • Received:2016-11-18 Revised:2017-04-18 Online:2017-08-12 Published:2017-05-11
  • Contact: Fu tihua, E-mail: futihua@sina.com; Wang jichen, E-mail: wchun1963@163.com E-mail:tdbin741023@163.com
  • Supported by:

    This study was supported by the Technology Innovation Fund of Chongqing(cstc2015shms-ztzx80001, cstc2015shms-ztzx80002, stc2015shms-ztzx80003, cstc2015shms-ztzx80004).


To explore the correlation and to discuss the classification standard of hardness and dry-matter contentof sweetpotato, collectedand determined 129 sweetpotato varieties (lines) by using sclerometer and drying method, respectively, and the linear regression equation was established based on the correlation between hardness and dry-matter content values. The dry-matter content and hardness of storage root in the 129 sweetpotato varieties (lines) could be divided into five grades with normal distribution, which proportions were 10.00%, 19.12%, 40.88%, 20.88%, and 9.12%, respectively. There were significant differences in hardness among different parts of storage root,ranking as: the core site of radial cuttingsurface>the middle site of radial cutting surface >the tail site of axial cutting surface>the head site of axial cutting surface>the core site of axial cutting surface >the middle site of axial cutting surface. There was significant positive correlation between hardness and dry-matter content of storage root. By using the mean value of hardness at core and middle parts of storage root after radial cutting, the dry matter content could be well predicted by using the regression equation y=0.6743x+3.6184 (20≤x≤60,R2=0.712192).This equation was validated in evaluation of the dry matter content in 20 sweet potato varieties (lines), and the relative error between estimated value and measured value was 0.2%. This result demonstrated that the equation obtained in this study could be used for accurate, fast and low cost measurement of dry matter content insweetpotato production and breeding.

Key words: 甘薯, 硬度, 干物质含量, 相关性, 回归方程, 概率分级

[1]吕长文, 唐道彬, 罗小敏, 王季春. 甘薯干物质测定方法研究. 江苏农业科学, 2009, (3): 307–308
Lyu C W, Tang D B, Luo X M, Wang J C. Study on the method of determination dry rate in sweet potato.Jiangsu AgricSic, 2009, (3): 307–308 (in Chinese)
[2]武崇光, 许海涛, 冯启涣, 陆漱韵. 测定甘薯干物质含量取样部位的研究. 北京农业大学学报, 1991, 17(4): 54–59
Wu C G, Xu H T, Feng Q H, Lu S Y. Study on the sampling site of determinating dry rate in sweet potato. ActaAgricUnivPekinensis, 1991, 17(4): 54–59 (inChinese)
[3]聂继云, 李志霞, 李海飞, 李静, 王昆, 毋永龙, 徐国锋, 闫震, 吴锡, 覃兴. 苹果理化品质评价指标研究. 中国农业科学, 2012, 45: 2895–2903
Nie J Y, Li Z X, Li H F, Li J, Wang K, Wu Y L, Xu G F, Yan Z, Wu X, Qin X. Evaluation in dices for apple physicochemical quality.SciAgricSin, 2012, 45: 2895–2903 (in Chinese with English abstract)
[4]刘平, 刘孟军, 周俊义, 毕平. 枣树数量性状的分布类型及其概率分级指标体系. 林业科学, 2003, 29(6): 77–82
Liu P, Liu M J, Zhou J Y, Bi P. Liu P, Liu M J, Zhou J Y, Bi P. Distribution and probability grading index system of quantitative character of Chinese jujube. SciSilv Sin, 2003, 39(6): 77–82 (in Chinese with English abstract)
[5]刘孟军. 枣树数量性状的概率分级研究. 园艺学报, 1996, 23: 105–109
Liu M J. Studies on the variation and probability grading of major quantitative characters of Chinese jujube.ActaHort Sin, 1996, 23: 105–109 (in Chinese with English abstract)
[6]李基平. 林木种子的正态分布曲线分级方法. 云南林业科技, 1998, 3(3): 37–41
Li J P. Normal distribution curve grade method of forest-tree seeds. Yunnan ForSciTechnol, 1998, 3(3): 37–41 (in Chinese with English abstract)
[7]郑丽静, 聂继云, 李明强, 康艳玲, 匡立学, 叶孟亮. 苹果风味评价指标的筛选研究. 中国农业科学, 2015, 48: 2796–2805
Zheng L J, Nie J Y, Li M Q, Kang Y L, Kuang L X, Ye M L. Study on screening of taste evaluation indexes for apple.SciAgric Sin, 2015, 48: 2796–2805 (in Chinese with English abstract)
[8]吴列洪, 沈升法, 李兵. 甘薯品种干物质含量与油炸薯片含油量和硬度间的相关性. 中国粮油学报, 2009, 24(11): 47–49
Wu L H, Shen S F, Li B. Correlation between dry rate of varieties and oil content and hardness of fried potato chips in sweet potato. J Chin Cereal OilAss, 2009, 24(11): 47–49 (in Chinese with English abstract)
[9]王文质, 以凡, 杜述荣, 魏秀玲, 许莉萍, 曹化林. 甘薯淀粉含量换算公式及换算表. 作物学报, 1989, 15: 94–96
Wang W Z, Yi F, Du S R, Wei X L, Xu L P, Cao H L. Conversion table of the starch content in sweet potato.ActaAgronSin, 1989, 15: 94–96 (in Chinese)
[10]董敦义, 关明杰, 朱一辛, 莫翠招, 莫弦丰. 不同竹龄毛竹硬度的测试分析. 林业科技开发, 2009, 23(5): 48–50
Dong D Y, Guan M J, Zhu Y X, Mo C Z, Mo X F. The hardness test and analysis solidness of Moso Bamboo in different ages.China ForSciTechnol, 2009, 23(5): 48–50 (in Chinese with English abstract)
[11]杜社妮, 李晶晶, 张蕊, 白岗栓. 苹果果实硬度适宜测定部位的研究. 北方园艺, 2011, (24): 33–35
Du S N, Li J J, Zhang R, Bai G S. Study on the suitable site of measuring fruit firmness in apple. Northern Hort, 2011, (24): 33–35 (in Chinese with English abstract )
[12]刘超超, 魏景利, 徐玉亭, 焦其庆, 孙海兵, 王传增, 陈学森. 苹果3个早熟品种果实发育后期硬度及其相关生理指标的初步研究. 园艺学报, 2011, 38: 133–138
Liu C C, Wei J L, Xu Y T, Jiao Q Q, Sun H B, Wang C Z, Chen X S. Preliminary study on firmness and related physiological indices of three early-ripening apple cultivar during late development of the fruit. ActaHort Sin, 2011, 38: 133–138 (in Chinese with English abstract)
[13] 唐启义, 冯明光. DPS数据处理系统: 实验设计、统计分析及模型优化. 北京: 科学出版社, 2006.pp656–665
Tang Q Y, Feng M G. DPS Data Processing System: Experimental Design, Statistical Analysis and Modeling. Beijing: Science Press, 2006. pp656–665 (in Chinese)
[14] 姜松, 王海鸥, 赵杰文. 猕猴桃低温贮藏期间硬度与化学品质的相关性研究. 食品科学, 2005, 26(5): 244–247
Jiang S, Wang H O, Zhao J W. Study on the correlation between firmness and chemical qualities of kiwi fruit during cold-storage. Food Sci, 2005, 26(5): 244–247 (in Chinese with English abstract)
[15]于振文. 作物栽培学各论北方本(第2版). 北京: 中国农业出版社, 2013.pp 171–180
Yu Z W.The Theory of Crop Cultivation Northern Version.2nd edn. Beijing: China Agriculture Press, 2013. pp 171–180 (in Chinese)
[16]贾延宇, 师玉忠, 田丰贺, 张宝宝, 靳卫娜. 甘薯不同部位淀粉的组成及黏度特性研究. 河南农业科学, 2011, 40(8): 84–86
Jia Y Y, Shi Y Z, Tian F H, Zhang B B, Le W N. Contents and viscosity properties of extracted starches from different parts of fresh sweet potato tubers. JHenan AgricSci, 2011, 40(8): 84–86 (in Chinese with English abstract)
[17]马文, 李喜宏, 刘霞, 贾晓昱, 张华, 李至良. 支链淀粉与直链淀粉比例对重组营养强化米品质的影响. 中国食品学报, 2014, 14(11): 42–48
Ma W, Li X H, Liu X, Jia X Y, Zhang H, Li Z L. Effects of the proportion of branched chain starch and amylose content on the quality of recombinant rice of nutrient enrichment.J Chin Inst Food Sci Tech, 2014, 14(11): 42–48 (in Chinese with English abstract)

No related articles found!
Full text



No Suggested Reading articles found!