Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 533-541.doi: 10.3724/SP.J.1006.2018.00533

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Detection of QTLs for Plant Height Related Traits in Brassica napus L. Using DH and Immortalized F2 Population

Ya-Jun HE1(), Dao-Ming WU1, Ying FU1,2, Wei QIAN1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2017-07-11 Accepted:2017-11-21 Online:2018-01-20 Published:2017-12-01
  • Contact: Wei QIAN E-mail:hyj790124@163.com;qianwei666@hotmail.com
  • Supported by:
    The study was supported by the National Natural Science Foundation of China (31671729), the National Key Research and Development Program of China (2016YFD0100202), and Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjAX0391).

Abstract:

Plant height is one of the important agronomic traits in rapeseed. In this study, QTLs for plant height and plant height related traits in Brassica napus were evaluated in two years environments by using a doubled haploid (DH) population lines derived from the cross between two rapeseed cultivars, Express and SWU07, and an immortalized F2 population generated by randomly permuted intermating of these DH lines. A total of 41 putative QTLs were identified for plant height and plant height related traits and located on 13 linkage groups. Among them, nine QTLs were identified for plant height, located on A02, A09, C01, C02, and C06, respectively, with explained phenotypic variation ranging from 3.85% to 13.34%, 15 QTLs were identified for inflorescence length, located on A01, A02, A05, A08, A09, C01, C03, and C05, respectively, with explained phenotypic variation ranging from 3.82% to 9.52%, 11 QTLs were identified for the first branch height, located on A01, A03, A09, C01, and C03, respectively, with explained phenotypic variation ranging from 4.01% to 16.54%, four QTLs were identified for branch segment, located on A07, A09, C03, and C04, respectively, with explained phenotypic variation ranging from 4.79% to 8.10%, two QTLs were identified for average internode length, located on A07 and C05, respectively, with explained phenotypic variation ranging from 4.29% to 6.04%. Five of these QTLs were persistently expressed in different year environments or in different populations. These QTLs provide useful information for improving plant height in rapeseed breeding.

Key words: Brassica napus, plant height related traits, QTL

Fig. 1

Parental lines, SWU07 and Express"

Fig. 2

Frequency distribution of plant height related traits from DH and IF2 populations in 2010 and 2011"

Table 1

Analysis of five plant height related traits in the two parents and two populations in 2010 and 2011 (cm)"

年份及性状
Year and trait
亲本 Parent DH群体 DH population IF2群体 IF2 population
Express SWU7 最大值
Max.
最小值
Min.
平均值
Average
标准差
SD
最大值
Max.
最小值
Min.
平均值
Average
标准差
SD
2010
株高PH 187.90 171.90 210.25 134.75 174.63 13.59 209.50 167.50 189.33 9.33
第1分枝高BH 64.42 54.21 96.75 0 53.73 12.03 98.25 20.88 70.78 10.33
主花序长MFL 62.45 66.64 95.00 43.25 69.74 9.54 81.38 50.25 66.93 6.74
分枝区段长BSL 61.03 51.05 103.75 7.00 51.44 15.75 89.62 20.12 51.62 9.77
平均节间长AIL 8.14 7.38 16.38 0.27 6.69 2.22 15.24 3.29 8.00 1.45
2011
株高PH 188.20 172.4 211.94 146.38 176.51 12.03 207.00 149.00 183.64 10.28
第1分枝高BH 64.11 54.48 82.19 0 56.17 10.89 84.50 36.25 56.62 8.48
主花序长MFL 62.89 67.24 96.00 40.42 67.08 8.71 94.25 48.88 75.98 7.62
分枝区段长BSL 61.20 50.68 109.31 10.12 53.18 16.62 73.74 28.00 51.04 7.24
平均节间长AIL 8.34 6.90 15.33 1.49 7.34 2.31 9.72 4.75 6.71 0.70

Table 2

Correlation analysis for plant height related traits in 2010 and 2011"

群体
Population
株高
PH
第1分枝高
BH
主花序长
MFL
分枝区段长
BS
平均节间长
AIL
DH 相关系数r 0.71173 0.59625 0.62933 0.62424 0.56011
PP-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IF2 相关系数r 0.42004 0.27913 0.44481 0.08834 0.09174
PP-value <0.0001 <0.0001 <0.0001 0.23700 0.22060

Table 3

Correlation coefficients among plant height-related traits in DH and IF2 populations"

性状
Trait
株高
PH
第1分枝高
BH
主花序长
MFL
分枝区段长
BS
平均节间长
AIL
2010
株高PH 0.37004** 0.38887** 0.29524** 0.15032*
第1分枝高BH 0.05025 -0.16880* -0.58786** -0.52719**
主花序长MFL 0.56513** 0.00826 -0.13980 -0.11797
分枝区段长BS 0.46819** -0.70657** -0.12289* 0.78030**
平均节间长AIL 0.40174** -0.66423** -0.03479 0.85850**
2011
株高PH 0.50163** 0.55404** 0.24941** 0.19897**
第1分枝高BH -0.09142 -0.06965 -0.38554** -0.31154**
主花序长MFL 0.42398** 0.00725 -0.18439** 0.08776
分枝区段长BS 0.56407** -0.72415** -0.22219** 0.55513**
平均节间长AIL 0.51891** -0.71135** -0.10067 0.89344**

Fig. 3

Putative QTLs for piant height related traita on different linkage group"

Table 4

Putative QTLs for plant height related traits detected in DH and IF2 populations."

QTL名称
QTL name
位置
Position
加性效应
Additive
贡献率
R2(%)
LOD值
LOD score
置信区间
Confidence interval
qPH-A02-1-2010IF2 0.01 -7.4375 5.8060 2.6304 0-4.6
qPH-A02-2011DH 46.01 -2.4401 3.8457 2.6262 45.0-50.3
qPH-A02-2-2010IF2 6.81 -8.4548 8.5134 4.1982 5.9-7.3
qPH-A09-2010DH 55.81 -3.3042 5.6678 3.0804 53.3-59.3
qPH-C01-1-2010DH# 36.01 3.5905 6.8271 4.7230 35.8-36.4
qPH-C01-1-2011DH# 35.01 3.6424 9.0971 6.1127 34.9-36.1
qPH-C01-2010IF2 27.41 2.1962 5.2034 2.9173 25.3-29.9
qPH-C01-2-2010DH# 41.61 5.0102 13.3370 5.1212 40.6-42.9
qPH-C01-2-2011DH# 41.61 4.1570 11.7177 4.7139 40.3-42.9
qPH-C02-2011IF2 20.91 -3.6501 6.3109 3.7199 19.9-22.4
qPH-C06-2010DH 0.01 -2.7798 3.8592 2.7071 0-4.9
qMFL-A01-2010DH 10.31 2.5968 4.6167 3.0365 9.1-13.8
qMFL-A02-1-2011DH# 4.21 -2.6647 4.8134 3.5387 1.2-7.2
qMFL-A02-2011IF2# 7.31 -4.3769 3.8153 2.6593 5.7-7.9
qMFL-A02-2-2011DH 10.91 -2.6231 6.6987 4.0032 9.4-13.0
qMFL-A05-1-2011DH 123.21 1.8066 4.0520 3.0253 118.5-125.2
qMFL-A05-2-2011DH 130.91 1.8008 4.0021 2.7637 125.2-136.9
qMFL-A08-1-2011DH 10.81 -1.9022 4.5131 3.1474 8.5-18.8
qMFL-A08-2-2011DH 21.11 -1.9707 4.9151 3.6317 19.5-23.8
qMFL-A09-1-2010DH 10.51 -2.8631 5.3042 2.5221 3.8-12.5
qMFL-A09-2-2010DH 98.81 -2.5999 4.4557 3.0245 94.7-99.8
qMFL-C01-1-2011DH 26.41 1.9285 4.2338 2.6209 25.6-27.4
qMFL-C01-2010IF2# 29.31 1.6312 5.6672 3.0765 28.8-30.1
qMFL-C01-2011IF2# 29.31 1.9919 6.5915 3.9887 28.7-29.9
qMFL-C01-2-2011DH 31.71 2.7168 9.5163 4.4021 30.7-33.1
qMFL-C03-1-2011DH# 15.31 2.2077 5.3394 3.4259 14.8-19.8
qMFL-C03-2011IF2# 17.61 1.9917 6.5247 4.2625 16.2-18.8
qMFL-C03-2-2011DH 24.81 2.3843 5.5196 3.7784 24.7-30.4
qMFL-C05-2010IF2 6.81 1.7169 5.3536 3.0272 2.9-9.2
qBH-A01-1-2011IF2 8.91 2.3066 5.0922 2.7862 8.0-10.6
qBH-A01-2-2011IF2 14.11 2.3209 4.8624 2.9737 13.5-15.4
qBH-A03-2010DH 76.51 2.5367 6.7539 4.3702 68.6-79.5
qBH-A09-2011DH 58.91 -3.0668 5.9761 3.9711 57.5-59.5
qBH-C01-1-2010DH 31.71 3.9053 16.5377 7.1960 30.7-32.5
qBH-C01-2011DH 26.41 -3.5477 7.1231 4.0033 25.3-27.6
qBH-C01-2011IF2 29.31 -1.7200 4.0073 2.5198 27.7-30.7
qBH-C01-2-2010DH 37.01 3.8418 15.6741 6.6958 36.5-37.1
qBH-C03-1-2010DH 17.61 2.7300 6.8083 4.9960 15.0-18.6
qBH-C03-2-2010DH 24.81 3.6189 10.7972 7.3851 22.3-25.9
qBH-C03-3-2010DH 30.11 2.9942 7.7415 4.6107 28.1-33.5
qBS-A07-2011DH 6.31 -4.1923 5.2783 3.0509 2.7-8.8
qBS-A09-2010DH 10.51 4.5982 8.0987 3.3536 6.5-12.1
qBS-C03-2011IF2 12.61 -2.0515 7.4363 4.5989 11.0-13.1
qBS-C04-2010DH 11.31 -3.7725 4.7862 2.7486 3.8-17.9
qAIL-A07-2011DH 5.31 -0.5257 4.2949 2.7073 3.3-10.1
qAIL-C05-2010IF2 3.81 -0.3883 6.0439 2.8258 2.9-7.1
[1] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣. 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013, 39: 207-215
Zhou Q Y, Li J Q, Cui C, Bo H D, Yin T, Yan Y H, Li J N, Zhang Z S.Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013, 39: 207-215 (in Chinese with English abstract)
[2] 刘后利. 油菜遗传育种学. 北京: 中国农业大学出版社, 2000. pp 32-45
Liu H L.Genetics and Breeding of Rapeseed. Beijing: China Agricultural University Press, 2000. pp 32-45
[3] Islam N, Evans E.InXuence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape ( Brassica napus L.).Theor Appl Genet, 1994, 88: 530-534
[4] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y.Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016, 6: 21625
[5] 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676-682
Yi B, Chen W, Ma C Z, Fu T D, Tu J X.Mapping of quantitative trait loci for yield and yield components in Brassica napus L.Acta Agron Sin, 2006, 32: 676-682 (in Chinese with English abstract)
[6] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊. 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015, 41: 1027-1033
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z.Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L.Acta Agron Sin, 2015, 41: 1027-1033 (in Chinese with English abstract)
[7] Cai D, Xiao ·Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K.Association mapping of six yield‑related traits in rapeseed ( Brassica napus L.).Theor Appl Genet, 2014, 127: 85-96
[8] Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D.Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
[9] Zhang S H, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z, Jiang Y Z.QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed ( Brassica napus L.).BIOTECHNOLOGY: Gene Clon Funct Anal, 2007, 2: 232-235
[10] Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Nancroft I, Zhao J Y, Meng J L.Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851-861
[11] Shi T X, Li R Y, Zhao Z K, Ding G D, Long Y, Meng J L, Xu F S, Shi L.QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One, 2013, 8: e54559
[12] Ding G D, Zhao Z K, Liao Y, Hu Y F, Shi L, Long Y, Xu F S.Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot, 2012, 109: 747-759
[13] Udall J A, Quijada P A, Lambert B, Osbom T C.Quantitative trait analysis of seed yield and other complex traits in hybrid spring rape seed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609
[14] Butruille D V, Guries R P, Osbom T C.Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L.Genetics, 1999, 153: 949-964
[15] Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D.Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
[16] 张凤启, 刘越英, 程晓晖, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695-700
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y.QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695-700 (in Chinese with English abstract)
[17] Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M.Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016, 7: 17
[18] Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, Zhao W, Li B, Chen Li, Chao H, Li M.Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.Theor Appl Genet, 2015, 128: 1175-1192
[19] Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F.Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid.Proc Natl Acad Sci USA, 2003, 100: 2574-2579
[20] Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon R J, Qian W.Development of genic cleavage markers in association with seed glucosinolate content in canola.Theor Appl Genet, 2015, 128: 1029-1037
[21] Zeng Z B.Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci.Proc Natl Acad Sci USA, 1993, 90: 10972-10976
[22] Zeng Z B.Precision mapping of quantitative trait loci.Genetics, 1994, 136: 1457-1468
[23] Churchill G A, Doerge R W.Empirical threshold values for quantitative trait mapping.Genetics, 1994, 138: 963-971
[24] 李云, 付绍红, 杨进, 王继胜, 邹琼, 陈晓华, 陶兰蓉, 康泽明, 唐蓉, 张汝全. 甘蓝型油菜矮秆突变体bndf-1的遗传鉴定及利用潜力分析. 中国农学通报, 2013, 29(13): 173-177
Li Y, Fu S H, Yang J, Wang J S, Zou Q, Chen X H, Tao L R, Kang Z M, Tang R, Zhang R Q.The identification and application of dwarf mutation bndf-1 in Brassica napus. Chin Agric Sci Bull, 2013, 29(13): 173-177 (in Chinese with English abstract)
[25] Khush G S.Green revolution: the way forward.Nat Rev Genet, 2001, 2: 815-822
[26] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S.Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought- stressed maize.Ann Bot, 2002, 89: 941
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[9] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[10] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[11] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[12] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[13] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[14] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[15] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!