Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 867-875.doi: 10.3724/SP.J.1006.2018.00867

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Stability of Trypsin Inhibitor in Foun Bruchid-Resistant Mung Bean Varieties

Yan-Ping FAN1,Xiao-Fang CHENG2,Hong-Min WANG3,Yao-Wen ZHANG4,Xian-Hong ZHANG1,*()   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, China
    3 College of economics and management, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    4 Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China
  • Received:2017-09-10 Accepted:2018-03-25 Online:2018-06-12 Published:2018-04-16
  • Contact: Xian-Hong ZHANG E-mail:zxh6288@sina.com
  • Supported by:
    The study was supported by the China Agriculture Research System(CARS-08-G10);the Major Project of Key Research and Development Program in Shanxi Province(201703D211002-8)

Abstract:

Taking bruchid-resistant mung beans C6749, C5200, C5193, and C5205 as experimental materials, with a susceptible mung bean Jinlyu 1 as control, the activity and the stability of mung bean trypsin inhibitor were measured under high temperature, high pressure, denaturant and reductant stresses. The trypsin inhibitor activities of four bruchid-resistant mung beans were significantly higher (P<0.01) than those of control (Jinlyu 1), showing C5200 > C5193 > C6749 > C5205. When treated with high temperature, high pressure, denaturant and reductant, the residual activities of trypsin inhibitor from the four bruchid-resistant mung beans were higher than those of control, and decreased with increasing temperature and pressure, and extending treatment time of denaturant and reductant. The effects of denaturant and reductant on the residual activity of trypsin inhibitor of bruchid-resistant mung beans showed a tendency of guanidine hydrochloride > ure, and TCEP > DTT > β-ME. Among the four bruchid-resistant mung beans, C5200 had the highest tolerance and C5193 had the moderate tolerance to high temperature, high pressure, denaturant and reductant stresses; C5205 had the lowest tolerance to high temperature, high pressure, denaturant stresses, while C6749 had the lowest tolerance to reductant treatment. We concluded that C5200 and C5193 have the highest residual activity of bruchid-resistant mung bean trypsin inhibitor under high temperature, high pressure, denaturant and reductant stresses, being of the higher value in its application.

Key words: bruchid-resistant mung bean, trypsin inhibitor, high temperature and high pressure, denaturant, reductant

Fig. 1

TI activity of different mung bean varieties Bars superscripted by different letters are significantly different at the 0.01 and 0.05 probability levels, respectively."

Table 1

Effect of high temperature and high pressure passivation on TI activity in bruchid-resistant mung bean varieties"

高温高压条件
Condition of high
temperature/high pressure
绿豆编号
Mung bean code
残余活性 Residual activity (%)
5 min 10 min 15 min 20 min
0.047 MPa/80°C CK 93.1±1.217 d 90.2±0.361 d 86.2±1.136 d 81.3±0.854 d

C6749 95.2±0.985 c 92.5±0.800 c 90.1±0.557 b 84.1±0.721 c
C5200 99.2±0.557 a 96.3±0.889 a 92.4±0.656 a 88.3±0.794 a
C5193 97.4±1.058 b 94.2±0.819 b 91.2±0.625 ab 86.2±1.136 b
C5205 94.1±0.985 cd 91.1±0.872 cd 88.4±0.755 c 82.8±0.755 cd
均值 Mean 95.80 92.86 89.66 84.54
极差 Range 7.50 7.10 7.60 8.70
变异系数 CV 0.026 0.025 0.026 0.032
高温高压条件
Condition of high
temperature/high pressure
绿豆编号
Mung bean code
残余活性 Residual activity (%)
5 min 10 min 15 min 20 min
0.101 MPa/100°C CK 43.7±0.700 e 35.8±0.900 e 24.9±0.755 e 16.7±0.700 e
C6749 59.1±0.721 c 54.1±0.964 c 45.7±0.721 c 30.2±0.755 c
C5200 74.4±0.700 a 70.2±0.800 a 62.5±0.854 a 45.3±0.900 a
C5193 65.2±0.954 b 60.5±0.700 b 54.3±1.249 b 36.4±0.755 b
C5205 50.5±0.800 d 44.1±1.082 d 38.1±0.700 d 24.5±0.755 d
均值 Mean 58.58 52.94 45.10 30.62
极差 Range 32.00 36.10 39.30 30.00
变异系数 CV 0.191 0.236 0.299 0.332
0.143 MPa/110°C CK 35.3±0.608 e 27.7±0.700 e 18.8±0.656 e 13.5±0.800 e
C6749 43.7±0.819 c 39.9±0.872 c 32.7±0.721 c 22.4±0.819 c
C5200 62.1±0.812 a 55.5±0.625 a 47.2±1.136 a 36.2±0.954 a
C5193 50.5±1.114 b 47.2±0.889 b 40.3±0.800 b 28.7±0.700 b
C5205 39.2±0.755 d 34.5±0.755 d 25.9±0.656 d 18.5±0.917 d
均值 Mean 46.16 40.96 32.98 23.86
极差 Range 28.20 29.00 30.30 24.60
变异系数 CV 0.212 0.245 0.317 0.345
0.198 MPa/120°C CK 26.4±0.755 e 18.6±0.600 e 10.2±0.400 e 5.5±0.300 e

C6749 37.4±0.721 c 31.2±0.608 c 22.5±0.700 c 12.4±0.436 c
C5200 53.5±0.800 a 44.7±0.755 a 34.5±0.700 a 25.3±0.458 a
C5193 42.7±0.800 b 35.4±0.755 b 27.4±0.889 b 18.5±0.557 b
C5205 30.6±0.755 d 24.8±0.819 d 17.2±0.755 d 9.5±0.361 d
均值 Mean 38.12 30.94 22.36 14.24
极差 Range 28.60 27.40 25.40 20.60
变异系数 CV 0.259 0.299 0.387 0.507

Table 2

Multi-comparance of TI activity in different mungbean varieties under high temperature and high pressure passivation"

绿豆编号
Mung bean code
TI活性均值
TI activity mean value
时间
Time (min)
TI活性均值
TI activity mean value
高温高压
High temperature/
high pressure (MPa/°C)
TI活性均值
TI activity mean value
CK 39.2438 Ee 5 59.6650 Aa 0.047/80 90.7150 Aa
C6749 49.5750 Cc 10 54.4250 Bb 0.101/100 46.8100 Bb
C5200 61.7250 Aa 15 47.5250 Cc 0.143/110 35.9900 Cc
C5193 54.7563 Bb 20 38.3150 Dd 0.198/120 26.4150 Dd
C5205 44.6125 Dd

Table 3

Effect of denaturant on TI activity in bruchid-resistant mung bean"

变性剂
Denaturant
绿豆编号
Mung bean code
残余活性 Residual activity (%)
1 h 2 h 3 h
尿素 CK 70.5±0.889 d 30.5±0.625 e 8.4±0.693 e
Urea C6749 80.8±1.758 c 40.3±0.721 c 17.1±0.721 c
C5200 90.5±0.625 a 50.2±0.656 a 30.4±0.964 a
C5193 84.8±1.054 b 44.3±0.625 b 22.3±0.781 b
C5205 80.0±0.700 c 35.1±0.529 d 12.5±1.058 d
均值 Mean 81.32 40.08 18.14
极差 Range 21.20 21.00 23.50
变异系数CV 0.084 0.178 0.440
盐酸胍 CK 33.4±0.656 e 9.4±0.529 e 0.2±0.050 e
Guanidine C6749 42.5±0.755 c 20.3±0.985 c 2.2±0.265 c
hydrochloride C5200 60.4±0.854 a 30.5±0.819 a 5.5±0.500 a
C5193 52.1±0.656 b 26.4±0.721 b 3.8±0.557 b
C5205 39.5±0.781 d 14.5±0.700 d 1.3±0.200 d
均值 Mean 45.58 20.22 2.60
极差 Range 28.40 22.40 5.85
变异系数CV 0.218 0.394 0.753

Table 4

Multi-comparance of TI activity in different mungbean varieties under different denaturant treatments"

绿豆编号
Mung bean
code
TI活性均值
TI activity
mean value
时间
Time (min)
TI活性均值
TI activity
mean value
变性剂
Denaturant
TI活性均值
TI activity
mean value
CK 25.4000 Ee 1 63.4500 Aa 尿素 Urea 46.5133 Aa
C6749 33.8667 Cc 2 30.1500 Bb 盐酸胍 Guanidine hydrochloride 22.8000 Bb
C5200 44.5833 Aa 3 10.3700 Cc
C5193 38.9500 Bb
C5205 30.4833 Dd

Table 5

Effect of reductant on TI activity in bruchid-resistant mung bean"

还原剂
Reductant
绿豆编号
Mung bean code
残余活性 Residual activity (%)
20 min 40 min 60 min
β-疏基乙醇 CK 61.4±0.781 e 45.3±0.625 e 30.2±0.819 e
β-ME C6749 70.0±1.044 d 55.4±0.700 d 38.5±0.656 d
C5200 90.5±1.389 a 75.6±0.700 a 52.3±0.854 a
C5193 85.7±0.781 b 70.0±0.800 b 45.7±0.700 b
C5205 75.5±0.625 c 59.5±0.819 c 40.2±0.854 c
均值 Mean 76.62 61.16 41.38
极差 Range 30.90 31.50 23.60
变异系数CV 0.142 0.182 0.185
二硫苏糖醇 CK 50.0±0.985 e 34.5±0.755 e 20.5±0.985 e
DTT C6749 57.5±0.755 d 40.0±0.964 d 25.7±1.054 d
C5200 80.5±1.136 a 63.5±0.755 a 43.8±0.854 a
C5193 72.2±0.800 b 58.4±0.700 b 35.2±1.100 b
C5205 61.5±0.800 c 44.3±0.917 c 30.4±0.900 c
均值 Mean 64.34 48.14 31.12
极差 Range 32.10 30.50 24.90
变异系数CV 0.174 0.238 0.267
三(2-羧乙基)膦 CK 42.4±1.044 e 26.5±0.800 e 9.4±0.625 e
盐酸盐 C6749 50.3±1.054 d 33.5±0.854 d 16.2±0.854 d
TCEP C5200 72.3±0.656 a 54.6±0.819 a 35.5±0.854 a
C5193 63.4±0.755 b 49.7±0.964 b 27.6±0.700 b
C5205 56.5±0.755 c 40.2±1.015 c 22.3±0.900 c
均值 Mean 56.98 40.90 22.20
极差 Range 31.30 29.60 27.50
变异系数CV 0.188 0.260 0.421

Table 6

Multi-comparison of TI activity in different mung bean varieties under different reductant treatments"

绿豆编号
Mung bean code
TI活性均值
TI activity mean value
时间
Time (min)
TI活性均值
TI activity mean value
还原剂
Reductant
TI活性均值
TI activity mean value
CK 35.5778 Ee 20 65.9800 Aa β-疏基乙醇β-ME 59.7200 Aa
C6749 43.0111 Dd 40 50.0667 Bb 二硫苏糖醇DTT 47.8667 Bb
C5200 63.1778 Aa 60 31.5667 Cc 三(2-羧乙基)膦盐酸盐 TCEP 40.0267 Cc
C5193 56.4333 Bb
C5205 47.8222 Cc
[1] 万善霞, 王婉婉, 滑静, 张淑平 . 胰蛋白酶抑制剂在不同领域的研究概况. 北京农学院学报, 2003,18:152-155
doi: 10.3969/j.issn.1002-3186.2003.02.020
Wan S X, Wang W W, Hua J , Zhang S P. Research status of trypsin inhibitor in different fields. J Beijing Agric Coll, 2003,18:152-155( in Chinese with English abstract)
doi: 10.3969/j.issn.1002-3186.2003.02.020
[2] 廖海, 杜林方, 周嘉裕 . 植物中蛋白类蛋白酶抑制剂的研究进展. 天然产物研究与开发, 2002,14(1):80-84
Liao H, Du L F, Zhou J Y . Research progress of protein protease inhibitors in plants. Nat Prod Res Dev, 2002,14(1):80-84 (in Chinese)
[3] 罗玉娇, 李滨, 舒衡平, 蒋立平 . Kunitz型胰蛋白酶抑制剂的研究进展. 中国生化药物杂志, 2012,33:316-319
Luo Y J, Li B, Shu H P , Jiang L P. Research advances in Kunitz trypsin inhibitor. Chin J Biochem Pharm, 2012, 2012,33:316-319( in Chinese)
[4] 刘大伟, 陈立杰, 段玉玺 . 灰皮支黑豆胰蛋白酶抑制剂基因的克隆及其在胞囊线虫胁迫下的表达分析. 河南农业科学, 2016,39(4):94-97
Liu D W, Chen L J, Duan Y X . Cloning of soybean Kunitz trypsin inhibitor gene from huipizhiheidou and expression analysis in soybean infected by Heterodera glycines. J Henan Agric Sci, 2016,39(4):94-97 (in Chinese with English abstract)
[5] 王荣春, 孙建华, 何述栋, 马莺 . 胰蛋白酶抑制剂的结构与功能研究进展. 食品科学, 2013,34(9):364-368
doi: 10.7506/spkx1002-6630-201309072
Wang R C, Sun J H, He S D, Ma Y . Recent advance in research on the structure and function of trypsin inhibitor. Food Sci, 2013,34(9):364-368 (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201309072
[6] 吴国昭, 朱克岩, 曾任森 . 大豆胰蛋白酶抑制剂对斜纹夜蛾生长发育的影响. 生态环境学报, 2013,22:1335-1340
doi: 10.3969/j.issn.1674-5906.2013.08.010
Wu G Z, Zhu K Y, Zeng R S . Effect of soybean trypsin inhibitor on the growth and development of Spodoptera litura. Ecol Environl Sci, 2013,22:1335-1340 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5906.2013.08.010
[7] Oliveira A S, Migliolo L, Aquino R O , Ribeiro J K C, Macedo L L P, Andrade L B, Bemquerer M P, Santos E A, Kiyota S, Sales M P. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its vitro effects towards digestive enzymes from insect pest. Plant Physiol Biochem, 2007,45:858-865
[8] Ye X Y, Ng T B, Rao P F . A Bowman-Birk-type trypsin- chymotrypsin inhibitor from broad beans. Biochem Biophys Res Commun, 2001,289:91-96
doi: 10.1006/bbrc.2001.5965 pmid: 11708782
[9] Kobayashi H, Suzuki M, Kanayama N, Terao T . A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastasis, 2004,21:159-166
doi: 10.1023/B:CLIN.0000024751.73174.c2
[10] 张少娟, 薛晓鸥, 刘同祥, 艾浩, 牛建昭 . 大豆胰蛋白酶抑制剂对人宫颈癌Hela细胞增殖的影响. 辽宁医学院学报, 2008,29:106-109
doi: 10.3969/j.issn.1674-0424.2008.02.004
Zhang S J, Xue X O, Liu T X, Ai H, Niu J Z . The effect of soybean typsin inhibitor on Proliferation of Human Hela cells. J Liaoning Med Univ, 2008,29:106-109 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-0424.2008.02.004
[11] 王长良, 张永忠, 孙志刚 . Bowman-Birk型大豆胰蛋白酶抑制剂研究进展. 大豆科学, 2007,26:757-761
Wang C L, Zhang Y Z, Sun Z G . Progress on the research of Bowman-Birk soybean trypsin inhibitor. Soybean Sci, 2007,26:757-761 (in Chinese with English abstract)
[12] Ho V S, Ng T B . A Bowman-Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. J Pept Sci, 2008,14:278-282
doi: 10.1002/psc.922 pmid: 17880027
[13] Fang E F, Wong J H, Ng T B . Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng, 2010,109:211-217
doi: 10.1016/j.jbiosc.2009.08.483
[14] 李娇, 崔晓东, 马晓丽, 王转花 . 重组荞麦胰蛋白酶抑制剂延长C. elegans寿命的作用机制. 中国生物化学与分子生物学报, 2016,32:1112-1120
Li J, Cui X D, Ma X L, Wang Z H . Mechanism underlying prolongevity induced by rBTI in Caenorhabditis elegans. Chin J Biochem Mol Biol, 2016,32:1112-1120 (in Chinese with English abstract)
[15] 吴燕子 . 重组荞麦胰蛋白酶抑制剂对乳腺癌细胞MCF-7作用的研究 . 山西大学硕士学位论文, 山西太原, 2015
Wu Y Z . Study on Effects of Recombinant Buckwheat Trypsin Inhibitor in Breast Cancer Cell Lines MCF-7. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2015 ( in Chinese with English abstract)
[16] 白崇智, 李玉英, 李芳, 张政, 王转花 . 重组荞麦胰蛋白酶抑制剂诱导肝癌细胞H22凋亡的作用及其机制. 细胞生物学杂志, 2009,31:79-83
Bai C Z, Li Y Y, Li F, Zhang Z, Wang Z H . Effect of recombinant buckwheat trypsin inhibitor on apoptosis of hepatocellular carcinoma cell line H22 and its mechanism. Chin J Cell Biol, 2009,31:79-83 (in Chinese)
[17] Sun L C, Yoshida A, Cai Q F, Liu J M, Weng L, Tachibana K, Su W J, Cao M J . Mung bean trypsin inhibitor is effective in suppressing the degradation of myofibrillar proteins in the skeletal muscle of blue scad ( Decapterus maruadsi). J Agric Food Chem, 2010,58:12986-12992
doi: 10.1021/jf103526e pmid: 21090622
[18] Zeng R S, Wen Z, Niu G, Schuler M A, Berenbaum M R . Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol, 2007,33:449-461
[19] Sagili R R, Pankiw T, Zhu-Salzman K . Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee ( Apis mellifera L.). J Insect Physiol, 2005,51:953-957
doi: 10.1016/j.jinsphys.2005.04.003 pmid: 15927200
[20] 曾任森, 苏贻娟, 叶茂, 谢丽君, 陈敏, 宋圆圆 . 植物的诱导抗性及生化机理. 华南农业大学学报, 2008,29(2):1-6
Zeng R S, Su Y J, Ye M, Xie L J, Chen M, Song Y Y . Plant induced defense and biochemical mechanisms. J South China Agric Univ, 2008,29(2):1-6 (in Chinese with English abstract)
[21] 曲梅, 韩锦铂, 孟延发 . 绿豆胰蛋白酶抑制剂对蛋白质前体加工酶的抑制活性. 第二军医大学学报, 2006,27:258-262
Qu M, Han J B, Meng Y F . Inhibitory activity of mung bean trypsin inhibitor on protein precursor processing enzymes. Acad J Second Milit Med Univ, 2006,27:258-262 (in Chinese with English abstract)
[22] 谭复隆, 戚正武 . 绿豆胰蛋白酶抑制剂两活性区域的拆分. 生理科学, 1982,2(5):13
Tan F L, Qi Z W . Resolution of two active region of mung bean trypsin inhibitor. Physiol Sci, 1982,2(5):13 (in Chinese)
[23] 屈贤铭, 罗珊珊, 任梅轩, 戚正武, 曹天钦 . 绿豆胰蛋白酶抑制剂的研究: II. 抑制剂A、B组分的关系及其化学结构的特征. 生物化学与生物物理学报, 1964,4:588-597
Qu X M, Luo S S, Ren M X, Qi Z W, Cao T Q . Studies on inhibitors of mung bean trypsin: II. The relationship between inhibitors, A, B components and their chemical structure characteristics. Acta Biochim Biophys Sin, 1964,4:588-597 (in Chinese)
[24] 戚正武, 任梅轩, 屈贤铭, 罗珊珊, 周元聪, 王克夷, 曹天钦 . 绿豆胰蛋白酶抑制剂化学与物化特征及其与活力的关系. 中国生理科学会学术会议论文, 北京, 1964. pp 43-44
Qi Z W, Ren M X, Qu X M, Luo S S, Zhou Y C, Wang K Y, Cao T Q. Characterization of chemical and physicochemical properties of mung bean trypsin inhibitor and its relationship with viability. In: Proceedings of the Chinese Society of Physiological Sciences, Beijing, China, 1964. pp 43-44(in Chinese)
[25] 张宾 . 大豆胰蛋白酶抑制剂的制备、理化性质和抗黄曲霉作用. 中国海洋大学博士学位论文, 山东青岛, 2010
doi: 10.7666/d.y1828797
Zhang B . Preparation, Purification and Properties of Soybean Trypsin Inhibitor with Anti-Aspergillus flavus Activity. PhD Dissertation of Ocean University of China, Qingdao, Shandong, China, 2010 ( in Chinese with English abstract)
doi: 10.7666/d.y1828797
[26] 阮景军 . 苦荞麦胰蛋白酶抑制剂的分离纯化、基因克隆表达及其抗病虫害研究. 四川农业大学博士学位论文, 四川成都, 2011
Ruan J J . Study on Isolation, Purification, Gene Cloning and Expression of Trypsin Inhibitor of Tartary Buckwheat and Resistance to Diseases and Insect Pest. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2011 ( in Chinese with English abstract)
[27] 王静, 朱庆华, 陈杰 . 紫花芸豆胰蛋白酶抑制剂的分离纯化及降糖作用研究. 临床合理用药杂志, 2015,8(9):126-127
Wang J, Zhu Q H, Chen J . Purification and partial characterization of trypsin inhibitor from Phaseolus vulgaris. Chin J Clin Ration Drug Use, 2015,8(9):126-127 (in Chinese)
[28] 邵彪, 汪少芸, 饶平凡 . 黑豆胰蛋白酶抑制剂的纯化及性质研究. 中国食品学报, 2010,10(6):47-53
doi: 10.3969/j.issn.1009-7848.2010.06.008
Shao B, Wang S Y, Rao P F . Studies on Purification and characterization of trypsin inhibitor from black soybean. Chin J Food Sci, 2010,10(6):47-53 (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-7848.2010.06.008
[29] 赵现明 . 豆类胰蛋白酶抑制剂的提取分离及纯化. 哈尔滨工业大学硕士学位论文, 黑龙江哈尔滨, 2013
Zhao X M . Extraction, Isolation and Purification of Trypsin Inhibitors from Leguminosae. MS Thesis of Harbin Institute of Technology, Harbin, China, 2013 ( in Chinese with English abstract)
[30] 阮景军, 唐自钟, 陈惠, 程剑平 . 核桃胰蛋白酶抑制剂的纯化及抑制植物病原真菌研究. 西南农业学报, 2016,29:826-830
doi: 10.16213/j.cnki.scjas.2016.04.018
Ruan J J, Tang Z Z, Chen H, Cheng J P . Purification of trypsin inhibitor from walnut and its inhibition on plant pathogenic fungi. Southwest China J Agric Sci, 2016,29:826-830 (in Chinese with English abstract)
doi: 10.16213/j.cnki.scjas.2016.04.018
[31] Godbole S, Krishna T, Bhatia C . Purification and characterization of protease inhibitors from pigeon pea ( Cajanus cajan( L.) Millsp) seeds. J Sci Food Agric, 1994,64:87-93
doi: 10.1002/jsfa.2740640113
[32] EI-Shamei Z, Wu J W, Haard N F . Influence of wound injury on accumulation of proteinase inhibitors in leaf and stem tissues of two processing tomato cultivars. J Food Biochem, 1996,20:155-171
doi: 10.1111/j.1745-4514.1996.tb00579.x
[33] 江均平, 李春红, 张涛, 云冬梅, 杨雪丰 . 绿豆胰蛋白酶抑制剂的含量、多型性及稳定性. 食品科学, 2013,34(11):32-35
doi: 10.7506/spkx1002-6630-201311008
Jiang J P, Li C H, Zhang T, Yun D M, Yang X F . Activity, Polymorphism and stability of trypsin inhibitor from mung beans. Food Sci, 2013,34(11):32-35 (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201311008
[34] Hilder V A , Gatehouse A M R, Sheerman S E, Barker R F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987,300:160-163
[35] 柳武革, 薛庆中 . 蛋白酶抑制剂及其在抗虫基因工程中的应用. 生物技术通报, 2000, ( 1):20-25
doi: 10.3969/j.issn.1002-5464.2000.01.004
Liu W G, Xue Q Z . Proteinase inhibitors and their application in insect-resistant gene engineering. Biotechnol Bull, 2000, ( 1):20-25 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-5464.2000.01.004
[36] 赵琳琳 . 大豆胰蛋白酶抑制因子对小鼠胰腺结构功能及基因表达的影响 . 吉林农业大学硕士学位论文, 吉林长春, 2014
Zhao L L . Effect of Soybean Trypsin Inhibitor on Structure and Function and Gene Expression Profile in Pancreas of Mice. MS Thesis of Jilin Agricultural University, Changchun, Jilin China, 2014 ( in Chinese with English abstract)
[37] 赵亚蕊, 李宗伟, 赵超, 付荣, 王兴华, 李卓玉 . 重组绿豆胰蛋白酶抑制剂片段对肠癌细胞SW480迁移的影响. 山西大学学报, 2012,35:126-129
Zhao Y R, Li Z W, Zhao C, Fu R, Wang X H, Li Z Y . Effect of recombinant mung bean trypsin inhibitor fragment on the migration of SW480 in human colon cancer cells. J Shanxi Univ, 2012,35:126-129 (in Chinese)
[38] 王莎莎, 马岳, 李玉银, 罗深恒, 刁爱坡, 龙民慧 . 绿豆胰蛋白酶抑制剂BBI诱导肺腺癌A549细胞凋亡. 华南师范大学学报, 2013,45(3):91-94
Wang S S, Ma Y, Li Y Y, Luo S H, Diao A P, Long M H . Apoptosis of lung adenocarcinoma A549 cells induced by mung bean trypsin inhibitor BBI. J South China Norm Univ, 2013,45(3):91-94 (in Chinese with English abstract)
[39] 廖海 . 两种决明子Cassia tora, Cassia obtusifolia蛋白酶抑制剂的纯化、性质与功能研究 . 四川大学博士学位论文, 四川成都, 2007
Liao H . Purification, Characteristics and function of Trypsin Inhibitors from Cassia tora and Cassia obtusifolia Seeds. PhD Dissertation of Sichuan University, Chengdu, Sichuan, China, 2007 ( in Chinese with English abstract)
[40] 刘盈盈 . 紫花芸豆胰蛋白酶抑制剂分离纯化及部分性质研究 . 南昌大学硕士学位论文, 江西南昌, 2006
doi: 10.7666/d.y928732
Liu Y Y . Purification and Partial Characterization of Trypsin Inhibitor from Phaseolus vulgaris. MS Thesis of Nanchang University, Nanchang, Jiangxi, China, 2006 ( in Chinese with English abstract)
doi: 10.7666/d.y928732
[1] FAN Yan-Ping,ZHANG Yao-Wen,ZHAO Xue-Ying,ZHANG Xian-Hong. Activity and Physico Chemical Properties of Trypsin Inhibitor in Bruchid-Resistant Mung Bean [J]. Acta Agron Sin, 2017, 43(11): 1696-1704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!