Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 859-866.doi: 10.3724/SP.J.1006.2018.00859

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation Analysis between Yield of Bast Fiber and Main Agronomic Traits in Jute (Corchorus spp.)

Yi XU1,2,Lie-Mei ZHANG1,Jian-Min QI1,Mei SU1,Shu-Sheng FANG1,2,Li-Lan ZHANG1,2,Ping-Ping FANG1,Li-Wu ZHANG1,2,*()   

  1. 1 Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops of Ministry of Education / Fujian Key Laboratory for Crop Breeding by Design / College of Crop Science, Fuzhou 350002, Fujian, China
    2 Center for Genomics and Biotechnology of Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2017-10-09 Accepted:2018-01-08 Online:2018-06-12 Published:2018-01-26
  • Contact: Li-Wu ZHANG E-mail:lwzhang@fafu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771369);the Foreign Cooperation Project of Science and Technology Department in Fujian, China(2015I001);the China Agriculture Research System(CARS-19-E06);the Experiment Station of Jute and Kenaf in Southeast China(农科教发2011);the Construction of Germplasm Resources Platform for Bast Fiber Crops in Fujian, China(2010N2002)

Abstract:

Studies on correlation between yield of bast fiber and main agronomic traits will provide scientific evidence to the breeding for high yield and reproduction of cultivars in jute. In this study, we analyzed the impact of 12 agronomic traits from 159 different jute germplasm resources on bast fiber yield (dry bark weight per plant). The variation coefficients of different traits varied from 11.89% to 38.50%, indicating abundant genetic variation among these traits. Bast fiber yield had significantly positive correlations with other traits, among which the relative high correlation coefficients between fiber yield and fresh bark weight per plant, plant height, days to flowering were 0.814, 0.760, and 0.648 respectively. The regression equation between bast fiber yield and fresh bark weight per plant, plant height, fresh bark thickness, bark rate was significant, with standard regression values of 0.443, 0.437, 0.291, and 0.113 respectively. Path coefficient analysis indicated that fresh bark weight per plant and plant height played a leading role in the determination of bast fiber yield. Also, the correlation coefficient (0.253) and standard regression coefficient (0.291) of bark rate were very close, showing that bark rate directly affects bast fiber yield, with a significant positive correlation between bast fiber yield and bark rate. Therefore, in breeding jute varieties with high bast fiber yield, it is imperative to take days to flowering, fresh bark weight per plant, plant height, bark rate and fresh bark thickness as main selection criteria with consideration for the improvement of comprehensive traits improvement.

Key words: jute, agronomic traits, yield of bast fiber, correlation analysis, path coefficient analysis

Supplementary table 1

Evaluation methods of main agronomic traits in jute"

农艺性状 Agronomic traits 考察方法 Methods of evaluation
生育期
Growth stages
现蕾期
Days to buds
当小区麻株开始现蕾(直径约2 mm, 肉眼可见)后, 隔1 d一次, 上午9:00-10:00观测, 记录现蕾株数。以试验小区全部麻株为观测对象, 50%的植株现蕾的日期为现蕾期。表示方法为“年月日”, 格式为“YYYYMMDD”。如“20160629”, 表示2016年06月29日现蕾。
始花期
Days to flowering
当小区开第1朵花后, 隔1 d一次, 上午9:00-10:00观测, 记录开花株数。以试验小区全部麻株为观测对象, 50%的植株开花的日期为开花期。表示方法和格式同现蕾期。
工艺成熟期
Days to technical mature
当植株出现上花下果(长果种花多果少, 圆果种果多花少)后, 表明已达到工艺成熟期。以试验小区全部麻株为观测对象, 记录小区2/3以上植株达到工艺成熟的日期为工艺成熟期。表示方法和格式同现蕾期。
种子成熟期
Days to seeds mature
当植株2/3以上的蒴果变成褐色时, 表明黄麻已经入种子成熟期。以试验小区全部麻株为观测对象, 记录小区2/3以上植株达到种子成熟的日期为种子成熟期。表示方法和格式同现蕾期。
节数Nodes of main stem 在黄麻植株的结果期, 蒴果完全成熟前3~5 d, 从试验小区中部随机取样10株为观测对象, 调查每株从茎秆子叶节至第1个有效分分枝节位的节数。单位为节, 精确到1节。
分枝数Number of branches 以调查节数时采集的样株为观测对象, 调查每株的一级有效分枝数。单位为个, 精确到1个。
分枝高Branching height 以调查节数时采集的样株为观测对象, 度量每株从茎秆基部到第一有效分枝节位的距离。单位为cm, 精确到0.1 cm。
株高Plant height 在黄麻植株的工艺成熟期, 从试验小区中部随机取样10株为观测对象, 度量每株从茎秆最基部到主茎生长点的距离。单位为cm, 精确到0.1 cm。
农艺性状 Agronomic traits 考察方法 Methods of evaluation
鲜皮厚Fresh bark thickness 以度量株高时采集的样株为观测对象, 用螺旋测微器, 又名千分卡尺(精度为1/10000)度量每株从茎秆基部以上全株高度1/3处的鲜麻皮厚度。单位为mm, 精确到0.01 mm。
单株鲜茎重Fresh stem weight per plant 黄麻鲜茎指除根去叶后的鲜茎秆。在黄麻植株的工艺成熟期, 从试验小区中部随机取样10株, 用1/100的电子天平称取鲜茎重量, 再换算成单株鲜茎重。单位为g, 精确到0.1 g。
单株鲜皮重Fresh bark weight per plant 黄麻鲜皮指鲜茎上剥下的新鲜麻皮。在黄麻植株的工艺成熟期, 从试验小区中部随机取样10株, 用1/100的电子天平称取鲜皮重量, 再换算成单株鲜皮重。单位为g, 精确到0.1 g。
单株干皮重Dry bark weight per plant 黄麻干皮指鲜茎上剥下后, 完全晒干的麻皮。在黄麻植株的工艺成熟期, 从试验小区中部随机取样10株, 用1/100的电子天平称取干皮重量, 再换算成单株干皮重。单位为g, 精确到0.1 g。

Table 1

Statistical analysis of main agronomic traits in jute"

性状
Trait
黄麻种质资源群体Jute germplasm resource population
平均值±标准差 Mean±SD 范围 Range 变异系数CV (%)
现蕾期Days to buds (d) 60.47±14.86 28-86 24.57
始花期Days to flowering (d) 69.38±14.83 36-94 21.38
工艺成熟期Days to technical mature (d) 90.12±14.95 55-113 16.59
种子成熟期Days to seeds mature (d) 138.65±16.48 100-169 11.89
单株干皮重 DBW (g) 34.64±10.28 10.0-58.0 29.68
株高PH (cm) 343.16±41.64 236.0-425.0 12.13
分枝高BH (cm) 250.57±66.57 59.0-362.5 26.57
鲜皮厚FBT (mm) 1.01±0.15 0.65-1.40 14.85
单株鲜茎重FSW (g) 386.02±114.72 139.0-830.0 29.72
单株鲜皮重FBW (g) 152.54±49.88 39.0-340.0 32.70
节数NMS 50.28±11.10 12.0-79.0 22.08
分枝数NB 3.15±0.70 2.2-5.0 22.22
出麻率BR (%) 8.39±3.23 2.7-23.0 38.50

Table 2

Correlation analysis between jute fiber yield and each growth period traits"

现蕾期
Days to buds
始花期
Days to flowering
工艺成熟期
Days to technical mature
种子成熟期
Days to seed
mature
单株干皮重
DBW
现蕾期 Days to buds 1
始花期 Days to flowering 0.969** 1
工艺成熟期 Days to technical mature 0.941** 0.977** 1
种子成熟期 Days to seeds mature 0.921** 0.956** 0.942** 1
单株干皮重 DBW 0.617** 0.648** 0.584** 0.637** 1

Table 3

Correlation analysis between jute fiber yield and eight economic traits"

单株干皮重
DBW
株高
PH
分枝高
BH
鲜皮厚
FBT
单株鲜茎重
FSW
单株鲜皮重
FBW
节数
NMS
分枝数
NB
出麻率
BR
单株干皮重 DBW 1
株高 PH 0.760** 1
分枝高 BH 0.673** 0.921** 1
鲜皮厚 FBT 0.402** 0.176 0.172 1
单株鲜茎重 FSW 0.743** 0.569** 0.456** 0.336** 1
单株鲜皮重 FBW 0.814** 0.649** 0.598** 0.354** 0.919** 1
节数 NMS 0.658** 0.842** 0.928** 0.285** 0.447** 0.587** 1
分枝数 NB 0.337** 0.241* 0.211* 0.163 0.313** 0.373** 0.121 1
出麻率 BR 0.253** 0.198* 0.219* 0.078 -0.237* -0.104 0.229* 0.146 1

Table 4

Multiple and standard regression analysis of jute fiber yield and economic traits"

非标准化回归系数 Non-standard regression coefficient 标准回归系数
Standard regression
coefficient
t Sig.
B 标准误差 Standard errors
常量 Constants -31.275 6.548 -4.776 0.000
株高 PH (cm) 0.108 0.030 0.437 3.622 0.000**
分枝高 BH (cm) -0.022 0.025 -0.145 -0.880 0.381
鲜皮厚 FBT (mm) 7.866 3.221 0.113 2.442 0.016*
单株鲜茎重 FSW (g) 0.018 0.011 0.202 1.651 0.102
单株鲜皮重 FFW (g) 0.091 0.026 0.443 3.520 0.001**
节数 NMS -0.019 0.112 -0.021 -0.173 0.863
分枝数 NB -0.352 0.687 -0.024 -0.513 0.609
出麻率 BR (%) 0.928 0.153 0.291 6.067 0.000**

Table 5

Path analysis of jute fiber yield and eight economic traits"

自变量
X
8个经济性状与单株干皮重(Y)的相关系数CCDBWP 直接通径
系数
Direct path coefficients
间接通径系数Indirect path coefficients
间接通径系数之和Total indirect path coefficients 株高
PH
分枝高 BH 鲜皮厚FBT 单株鲜
茎重
FSW
单株鲜
皮重
FBW
节数 NMS 分枝数 NB 出麻率 BR
X1 X2 X3 X4 X5 X6 X7 X8
X1 0.760** 0.437 0.323 -0.134 0.020 0.115 0.288 -0.018 -0.006 0.058
X2 0.673** -0.145 0.818 0.402 0.019 0.082 0.255 0.019 -0.005 0.054
X3 0.402** 0.113 0.290 0.067 -0.025 0.058 0.147 -0.006 -0.004 0.054
X4 0.743** 0.202 0.537 0.245 -0.066 0.038 0.407 -0.009 -0.007 -0.069
X5 0.814** 0.443 0.371 0.283 -0.087 0.040 0.186 -0.012 -0.009 -0.003
X6 0.658** -0.021 0.659 0.368 -0.135 0.032 0.080 0.250 -0.003 0.067
X7 0.337** -0.024 0.360 0.105 -0.030 0.018 0.063 0.165 -0.003 0.042
X8 0.253** 0.291 -0.034 0.087 -0.029 0.009 -0.048 -0.046 -0.005 -0.004
[1] 熊和平 . 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp 208-296
Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. pp 208-296(in Chinese)
[2] 张加强, 陈常理, 骆霞红, 金关荣 . 中国育成黄麻主要品种间的亲缘关系分析. 中国农业科学, 2015,48:4008-4020
Zhang J Q, Chen C L, Luo X H, Jin G R . Analysis of the coefficient of parentage among major jute cultivars in China. Sci Agric Sin, 2015,48:4008-4020 (in Chinese with English abstract)
[3] Islam M S, Saito J A, Emdad E M, Ahmed B, Islam M M, Halim A, Hossen Q M, Hossain M Z, Ahmed R, Hossain M S, Kabir S M, Khan M S, Khan M M, Hasan R, Aktar N, Honi U, Islam R, Rashid M M, Wan X, Hou S, Haque T, Azam M S, Moosa M M, Elias S M, Hasan A M, Mahmood N, Shafiuddin M, Shahid S, Shommu N S, Jahan S, Roy S, Chowdhury A, Akhand A I, Nisho G M, Uddin K S, Rabeya T, Hoque S M, Snigdha A R, Mortoza S, Matin S A, Islam M K, Lashkar M Z, Zaman M, Yuryev A, Uddin MK, Rahman M S, Haque M S, Alam M M, Khan H, Alam M . Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants, 2017,3:16223
doi: 10.1038/nplants.2016.223 pmid: 28134914
[4] Rana M K, Arora K, Singh S, Singh A K . Multi-locus DNA fingerprinting and genetic diversity in jute ( Corchorus spp.) based on sequence-related amplified polymorphism. J Plant BiochemBiotech, 2012,22:1-8
doi: 10.1007/s13562-012-0104-7
[5] Mir R R, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi A, Khan H, Sinha M K, Balyan H S, Gupta P K . A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica, 2007,161:413-427
[6] 祁建民, 卢浩然, 郑云雨, 王英娇 . 黄麻数量性状遗传关系分析. 作物学报, 1991,17:145-150
Qi J M, Lu H R, Zheng Y Y, Wang Y J . Genetic relationship analysis of quantitative traits in jute. Acta Agron Sin, 1991,17:145-150 (in Chinese with English abstract)
[7] 孙家曾, 余隆其, 何广文 . 黄麻主要数量性状遗传力和相关性的研究. 中国农业科学, 1981,14(3):25-32
Sun J Z, Yu L Q, He G W . Heritability and correlation studies of major quantitative traits in jute. Sci Agric Sin, 1981,14(3):25-32 (in Chinese with English abstract)
[8] 张加强, 陈常理, 骆霞红, 金关荣 . 26份黄麻种质资源产量性状的主成分聚类分析极其评价. 植物遗传资源学报, 2016,17:475-482
doi: 10.13430/j.cnki.jpgr.2016.03.011
Zhang J Q, Chen C L, Luo X H, Jin G R . Evaluation of yield components of 26 jute germplasm resources by principal component cluster analysis. J Plant Genet Resour, 2016,17:475-482 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.03.011
[9] Zhang L, Yuan M, Tao A, Xu J, Lin L, Fang P, Qi J . Genetic structure and relationship analysis of an association population in jute ( Corchorus spp.) evaluated by SSR markers. PLoS One, 2015,10:e0128195
doi: 10.1371/journal.pone.0128195 pmid: 4452778
[10] 粟建光 . 黄麻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 7-27
Su J G. Descriptors and Data Standard for Jute (Corchorus olitorius L. & Corchorus capsularis L.). Beijing: China Agriculture Press, 2005. pp 7-27(in Chinese)
[11] 杜家菊, 陈志伟 . 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010,45(2):4-6
doi: 10.3969/j.issn.0006-3193.2010.02.002
Du J J, Chen Z W . Method of path analysis using SPSS linear regression. Biol Bull, 2010,45(2):4-6 (in Chinese with English abstract)
doi: 10.3969/j.issn.0006-3193.2010.02.002
[12] Zhang L, Li A, Wang X, Xu J, Zhang G, Su J, Qi J, Guan C . Genetic diversity of kenaf ( Hibiscus cannabinus) evaluated by inter-simple sequence repeat (ISSR). Biochem Genet, 2013,51:800-810
doi: 10.1007/s10528-013-9608-7 pmid: 23794008
[13] 张加强, 骆霞虹, 陈常理, 朱关林, 金关荣 . 圆果种黄麻主要经济性状与纤维产量的相关及灰色关联分析. 中国麻业科学, 2015, ( 2):70-74
Zhang J Q, Luo X H, Chen C L, Zhu G L, Jin G R . Correlation and gray relational analysis on main economic characters and fiber yield of white jute. Plant Fiber Sci China, 2015, ( 2):70-74 (in Chinese with English abstract)
[14] 卢浩然, 郑云雨, 朱秀英, 王英娇 . 黄麻七个经济性状遗传力的研究. 中国麻作, 1980, ( 1):6-8
Lu H R, Zheng Y Y, Zhu X Y, Wang Y J . Genetic studies of seven economic traits in jute. China’s Fiber Crops, 1980, ( 1):6-8 (in Chinese with English abstract)
[15] 郭安平, 龚友才 . 圆果种黄麻主要农艺性状的遗传相关及通径分析. 中国麻作, 1988, ( 2):6-9
Guo A P, Gong Y C . Genetic correlation and path analysis of the main agronomic traits in white jute. China’s Fiber Crops, 1988, ( 2):6-9(in Chinese with English abstract)
[16] 郑云雨, 卢浩然, 王英娇, 祁建民 . 黄麻主要经济性状相关的研究. 中国麻作, 1985, ( 3) : 38-41
Zheng Y Y, Lu H R, Wang Y J, Qi J M . Study on the correlation of main economic characters of jute. China’s Fiber Crops, 1985, ( 3):38-41 (in Chinese with English abstract)
[17] 郭安平, 龚友才 . 长果种黄麻品种主要农艺性状与单株产量关系的分析. 中国麻作, 1988, ( 4):13-18
Guo A P, Gong Y C . Analysis of relationship between main agronomic characters and yield per plant of long fruit jute varieties. China’s Fiber Crops, 1988, ( 4):13-18 (in Chinese with English abstract)
[18] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
[19] Zhang L W, Yang G S, Liu P W, Hong D F, Li S P, He Q B . Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet, 2011,122:21-31
doi: 10.1007/s00122-010-1419-1 pmid: 20686746
[20] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861
[21] 郑云雨, 祁建民, 李维明, 缪小红, 王英娇, 林培青, 卢浩然 . 黄麻产量和纤维品质性状典型相关与双重筛选逐步回归分析. 福建农林大学学报(自然科学版), 1994, ( 1):17-20
Zheng Y Y, Qi J M, Li W M, Miu X H, Wang Y J, Lin P Q, Lu H R . Canonical correlation and double screening stepwise regression analysis ofyield and fiber quality traits in jute. J Fujian Agric For Univ ( Nat Sci Edn), 1994, ( 1):17-20 (in Chinese with English abstract)
[22] 卢瑞克, 杨泽茂, 戴志刚, 许英, 唐蜻, 程超华, 陈基权, 粟建光 . 50份长果黄麻种质资源耐盐性鉴定评价. 植物遗传资源学报, 2017,18(6):1-11.
Lu R K, Yang Z M, Dai Z G, Xu Y, Tang Q, Cheng C H, Chen J Q, Su J G . Evaluation for salt tolerance of 50 jute germplasm resources ( Corchorus olitorius L.). J Plant Genet Resour, 2017,18(6):1-11 (in Chinese with English abstract)
[1] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[2] GUO Yan-Chun, YAO Jia-Yu, ZHANG Rong-Bin, CHEN Si-Yuan, HE Qing-Yao, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Identification and phylogenetic analysis of the pathogen of jute anthracnose in China [J]. Acta Agronomica Sinica, 2022, 48(3): 770-777.
[3] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[4] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[5] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
[6] HASAN Umut,SAWUT Mamat,Shui-Sen CHEN,Dan LI. Inversion of leaf area index of winter wheat based on GF-1/2 image [J]. Acta Agronomica Sinica, 2020, 46(5): 787-797.
[7] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[8] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[9] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[10] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
[11] Hong JIANG,Shi SUN,Wen-Wen SONG,Cun-Xiang WU,Ting-Ting WU,Shui-Xiu HU,Tian-Fu HAN. Characterization of Growth Period Structure and Identification of E Genes of MGIII Soybean Varieties from Different Geographic Regions [J]. Acta Agronomica Sinica, 2018, 44(10): 1448-1458.
[12] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[13] Lan-Fen WANG, Jing WU, Zhao-Li WANG, Ji-Bao CHEN, Li YU, Qiang WANG, Shu-Min WANG. Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(03): 357-368.
[14] Zhi-Fei XUE, Xia WANG, Fu-Peng LI, Chao-Zhi MA. Homologous Cloning of BnGS3 and BnGhd7 Genes in Brassica napus and Their Relationship with Rapeseed Yield-related Traits [J]. Acta Agronomica Sinica, 2018, 44(02): 297-305.
[15] ZHENG Li-Fei,SHANG Yi-Fei,LI Xue-Jun,FENG Hao,WEI Yong-Sheng. Structural Equation Model for Analyzing Relationshipbetween Yield and Agronomic Traits in Winter Wheat [J]. Acta Agron Sin, 2017, 43(09): 1395-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!