Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 852-858.doi: 10.3724/SP.J.1006.2018.00852

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping Main-effect and Epistatic QTL for Hard Seededness in Soybean

Li-Juan AI1,2,Qiang CHEN2,Chun-Yan YANG2,Long YAN2,Feng-Min WANG2,Rong-Chao GE1,*(),Meng-Chen ZHANG2,*()   

  1. 1 College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
    2 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Shijiazhuang Branch of National Soybean Improvement Center / Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
  • Received:2017-09-05 Accepted:2018-01-08 Online:2018-06-12 Published:2018-01-23
  • Contact: Rong-Chao GE,Meng-Chen ZHANG E-mail:grcgp@sina.com;mengchenzhang@hotmail.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100201);the China Agriculture Research System(CARS-004-PS06);Key Research and Development Projects of Hebei Provence(16227516D)

Abstract:

Hardness is a common characteristic of plant seeds, which is an important quantitative trait affecting germination rate, viability and storage life, and also processing quality of soybean seeds. In this study QTL analysis of the additive and epistatic interaction was used to reveal the important loci and effects controlling soybean hard seededness, and to provide theoretical basis for further analysis of the complex genetic mechanism of hard seededness. F6:8 and F6:9 populations of 186 recombinant inbred lines (RIL) derived from a cross of Jidou 12 and native variety Heidou (ZDD03651) were used to determine the additive QTLs for hard seededness in different years by the composite interval mapping (CIM) method in WinQTL Cartographer V. 2.5 software. The inclusive complete interval mapping (ICIM) method in IciMapping 4.1 software was used for analysing the interaction of additive and epistatic QTLs for hard seededness. Three QTLs for hard seededness were identified on Chr. 02, Chr. 06, and Chr. 14, respectively, with the genetic contribution rate of 5.54%-12.94%. Four pairs of epistatic interaction QTLs were detected on Chr. 02, Chr. 06, Chr. 09, Chr. 12, and Chr. 14, respectively, with explained 2.53%-3.47% of the phenotypic variation. The QTLs of additive and epistatic interactions were also detected in the hard seeds of soybean, and the epistasis was performed between the main effect QTLs or between the main effect QTL and the non-main effect QTL. The results indecate that the epistatic interaction effect plays an important role in the genetic basis of hard seededness of soybean.

Key words: soybean, hard seededness, QTL, epistasis

Fig. 1

Change of hard seededness rate"

Table 1

Phenotypic values of the hard seededness of soybean parents and RILs populations under different environments"

年份
Year
亲本Parents 重组自交系群体RILs population
冀豆12
Jidou 12 (%)
黑豆
Heidou (%)
平均值
Mean (%)
最大值
Maximum (%)
最小值
Minimum (%)
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2011 0 71.65 9.78 90.00 0 17.52 56 2.07 4.27
2013 0 83.33 16.85 96.67 0 22.45 75 1.42 1.29

Fig. 2

Frequency distributions for hard seededness in 186 soybean RILs"

Table 2

QTLs for hardness of soybean seeds under different environments by different methods"

QTL名称
Name of QTL
染色体/连锁群
Chr./LG
标记区间
Marker interval
WinQTL Cart 2.5 IciMapping 4.1
年份
Year
阈值
LOD
贡献率
R2 (%)
加性效应
Additive effect
年份
Year
阈值
LOD
贡献率
R2 (%)
加性效应
Additive
effect
qHS-2-1 Chr.02/D1b Sat_069-Sat_183 2011 2.94 6.82 4.62 2011 2.99 5.57 4.57
2013 2.51 5.54 5.16
qHS-6-1 Chr.06/C2 Sat_402-Satt460 2011 6.02 11.99 6.09 2011 5.87 11.04 6.47
2013 6.64 12.94 7.92 2013 2.77 6.52 6.29
qHS-14-1 Chr.14/B2 Satt577-Sat_287 2013 3.34 8.25 -6.26 2013 3.31 9.39 -7.47

Table 3

Epistasis effect of QTLs for hardness of soybean seeds under different environments"

QTL名称
Name of QTL
标记区间
Marker interval
QTL名称
Name of QTL
标记区间
Marker interval
年份
Years
阈值
LOD
贡献率
R2 (%)
上位性效应
Add by add
qHS-6-1 Sat_402-Satt460 qHS-2-1 Sat_069-Sat_183 2011 10.41 2.69 8.66
qHS-9-1 Sat_399-Satt273 2011 10.93 2.74 8.82
2013 7.24 3.36 11.64
qHS-12-1 Barcsoyssr_12_1-Satt353 2011 6.22 2.53 -8.15
2013 7.50 3.47 -10.08
qHS-14-1 Satt577-Sat_287 qHS-12-1 Barcsoyssr_12_1-Satt353 2013 5.87 3.13 10.10

Fig. 3

Location of additive QTLs and epistatic effects QTLs on linkage groups The black bars show the support interval of QTL position, the dotted line represents epistatic QTLs."

[1] 孙星邈, 王政, 李曙光, 孟凡凡, 王曙明, 张井勇 . 大豆硬实形成机制与破除技术的研究进展. 大豆科技, 2014, ( 3):23-27
doi: 10.3969/j.issn.1674-3547.2014.03.007
Sun X M, Wang Z, Li S G, Meng F F, Wang S M, Zhang J Y . Progress on formation mechanism and breaking methods of hard seed in soybean. Soybean Sci Technol, 2014, ( 3):23-27 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3547.2014.03.007
[2] Ladizinsky G . The origin of lentil and its wild genepoo. Euphytica, 1979,28:179-187
doi: 10.1007/BF00029189
[3] Abbo S, Shtienberg D, Lichtenzveig J, Lev-Yadun S, Gopher A . The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east. Q Rev Biol, 2003, 78:435
[4] Weeden N F . Genetic changes accompanying the domestication of pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot, 2007,100:1017-1025
doi: 10.1109/55.215086 pmid: 17660515
[5] Andargie M, Pasquet R S, Gowda B S, Muluvi G M, Timko M P . Molecular mapping of QTLs for domestication-related traits in cowpea [ V. unguiculata( L.) Walp.]. Euphytica, 2014,200:401-412
[6] Potts H C, Duangpatra J, Hairston W G, Delouche J C . Some influences of hardseededness on soybean seed quality. Crop Sci, 1978,18:221-224
doi: 10.2135/cropsci1978.0011183X001800020006x
[7] Meyer C J, Steudle E, Peterson C A . Patterns and kinetics of water uptake by soybean seeds. J Exp Bot, 2007,58:717-732
[8] Mullin W J, Xu W . Study of soybean seed coat components and their relationship to water absorption. J Agric Food Chem, 2001, 49:5331-5335
[9] Zhang B, Chen P Y, Chen C Y, Wang D C, Shi A N, Hou A F, Ishibashi T . Quantitative trait loci mapping of seed hardness in soybean. Crop Sci, 2008,48:1341-1349
doi: 10.2135/cropsci2007.10.0544
[10] Rolston M P . Water impermeable seed dormancy. Bot Rev, 1978,44:365-396
doi: 10.1007/BF02957854
[11] Foley M E . Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Sci, 2017,49:305-317
[12] Saio K, Arai K, Watanabe T . Fine structure of soybean seed coat and its changes on cooking. Cereal Sci Today, 1973,18:197-201
[13] Saio K . Soybeans resistant to water absorption. Cereal Foods World, 1976,21:168-173
doi: 10.1007/BF02591040
[14] Ting C L . Genetic studies on the wild and cultivated soybeans. J Am Soc Agron, 1946,38:381-393
doi: 10.2134/agronj1946.00021962003800050001x
[15] Kilen T C, Hartwig E E . An inheritance study of impermeable seed in soybean. Field Crops Res, 1978, 1:65-70
[16] Marjushkin V F, Sichkar V I, Michailov V G, Polivoda V G . Inheritance of hard seedness in soybean. Soybean Genet Newsl, 1988,15:294-297
[17] Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K . Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci, 2004,54:399-407
doi: 10.1270/jsbbs.54.399
[18] Keim P, Diers B W, Shoemaker R C . Genetic analysis of soybean hard seededness with molecular markers. Theor Appl Genet, 1990,79:465-469
[19] Sun L J, Miao Z Y, Cai C M, Zhang D J, Zhao M X, Wu Y Y, Zhang X L, Swarm S A, Zhou L W , Zhang Z J Y, Nelson R L, Ma J X. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet, 2015,47:939
[20] Jang S J, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Benitez E R, Liu B H, Yamada T, Abe J . A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS One, 2015,10:e0128527
doi: 10.1371/journal.pone.0128527 pmid: 4454576
[21] 雷东阳, 谢放鸣, 徐建龙, 陈立云 . 稻米粒形和垩白度的QTL定位和上位性分析. 中国水稻科学, 2008,22:255-260
doi: 10.3321/j.issn:1001-7216.2008.03.006
Lei D Y, Xie F M, Xu J L, Chen L Y . QTLs mapping and epistasis analysis for grain shape and chalkiness degree of rice. Chin J Rice Sci, 2008,22:255-260 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2008.03.006
[22] Soyk S, Lemmon Z H, Oved M, Fisher J, Liberatore K L, Park S J, Goren A, Jiang K, Ramos A , Van der Knaap E, Van Eck J, Zamir D, Eshed Y, Lippman Z B. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017,169:1142-1155
doi: 10.1016/j.cell.2017.04.032
[23] Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J . QTL mapping of domestication-related traits in soybean ( Glycine max). Ann Bot, 2007,100:1027-1038
[24] 陈强 . 大豆籽粒相关性状QTL定位分析 . 河北科技师范学院硕士学位论文, 河北秦皇岛, 2014
doi: 10.7666/d.Y2762071
Chen Q . QTL Mapping for Seed Related Traits in Soybean (Glycine max L. Merr.) . MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2014 ( in Chinese with English abstract)
doi: 10.7666/d.Y2762071
[25] 雷雅坤, 闫龙, 杨春燕, 宋晓坤, 张孟臣, 黄占景 . 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012,27:5-10
doi: 10.3969/j.issn.1000-7091.2012.06.002
Lei Y K, Yan L, Yang C Y, Song X K, Zhang M C, Huang Z J . Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012,27:5-10 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7091.2012.06.002
[26] McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M . Microsatellite marker development, mapping and application in rice genetics and breeding. Plant Mol Biol, 1997,35:89-99
doi: 10.1023/A:1005711431474 pmid: 9291963
[27] 牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青春, 刘兵, 章元明 . 大豆粒形性状QTL的精细定位. 作物学报, 2013,39:609-616
Niu Y, Xie F T, Bu S H, Xie S Q, Han S F, Geng Q C, Liu B, Zhang Y M . Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agron Sin, 2013,39:609-616 (in Chinese with English abstract)
[28] Hagiwara W E, Onishi K, Takamure O I, Sano Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35
doi: 10.1007/s10681-006-9085-8
[29] Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G . Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice ( Oryza sativa L.). Field Crops Res, 2005,91:161-170
doi: 10.1016/j.fcr.2004.06.004
[30] Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L . Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,95:799-808
doi: 10.1007/s001220050628
[31] Lehner B . Molecular mechanisms of epistasis within and between genes. Trends Genet, 2011,27:323-331
doi: 10.1016/j.tig.2011.05.007
[32] Cho Y B, Jones S I, Vodkin L O . Mutations in argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell, 2017,29:708
doi: 10.1105/tpc.17.00162 pmid: 28351993
[33] Carlborg O, Haley C S . Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004,5:618
doi: 10.1038/nrg1407
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[15] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!