Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 844-851.doi: 10.3724/SP.J.1006.2018.00844

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of tms5 Mutants in Rice Based on CRISPR/Cas9 Technology

Zhong-Ming HUANG1,Yan-Biao ZHOU2,3,*(),Xiao-Dan TANG3,Xin-Hui ZHAO3,Zai-Wei ZHOU3,Xing-Xue FU3,Kai WANG4,Jiang-Wei SHI3,Yan-Feng LI4,Chen-Jian FU2,3,Yuan-Zhu YANG1,2,3,4,*()   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2 Yuan Longping High-Tech Agriculture Co. Ltd., Hunan / Hunan Engineering Laboratory for Disease and Pest Resistance Rice Breeding, Changsha, 410001, Hunan, China
    3 Hunan Longping High-Tech Seeds Science Academy Co. Ltd., Changsha 410119, Hunan, China
    4 College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
  • Received:2017-10-25 Accepted:2018-03-26 Online:2018-06-12 Published:2018-04-08
  • Contact: Yan-Biao ZHOU,Yuan-Zhu YANG E-mail:zhouyb@lpht.com.cn;yzhuyah@163.com
  • Supported by:
    This study was supported by the Major Project of China on New Varieties of GMO Cultivation(2016ZX08001-004);the Key Research Program of Hunan Province(2016JC2026)

Abstract:

In order to create excellent temperature sensitive sterile line and promote the development of two line hybrid rice breeding. a 20 bp guide RNA (gRNA) was targeted to the first exon of TMS5, a thermo-sensitive genic male sterile gene as the editable object in present study, and driven by the rice U3 promoter. The target site of gRNA was ligated into the vector pCAMBIA1301, and its transgenic lines were obtained via Agrobacterium-mediated transformation. The genomic DNA of T0 transgenic lines was then extracted, and the TMS5 locus was detected by PCR and sequenced. The mutagenesis frequency for TMS5 was 63.89%, of which the frequency of homozygous deletion mutation was 34.78%. Furthermore, the fertility transition temperature and agronomic traits of T1 homozygous deletion mutants were investigated, showing that the fertility transition temperature of tms5 mutants was 28°C. Both seed setting rate and grain yields in tms5 mutants were significantly decreased compared with those in wild-type plants in paddy field condition. Together, the successful construction of tms5 mutants lays a material foundation for breeding the thermo-sensitive male sterile line of japonica rice.

Key words: rice, genome editing, CRISPR/Cas9, TMS5, thermo-sensitive genic male sterile

Fig. 1

Schematic diagram of the targeted site in TMS5 The red letters are the target genome sequences; The blue letters are the protospacer adjacent motif (PAM) sequences."

Table 1

Primer sequences used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
Target-1F TGGCGAACAGCGGCAAGTCATCGC
Target -1R AAACGCGATGACTTGCCGCTGTTC
M13F GTAAAACGACGGCCAG
GUS-JC-F CGTCCGTCCTGTAGAAACCC
GUS-JC-R GTGCGGATTCACCACTTGC
TMS5-CX-F TCCAACGCATAGCAGTAGTCG
TMS5-CX-R TGCCATCGTATCTCCGGTAAA

Fig. 2

Schematic diagram of the CRISPR/Cas9-TMS5 vector construction A: schematic diagram of the recombinant vector of 18T-Cas9-TMS5-gRNA; B: T-DNA fragment of pCAMBIA1301 vector; C: schematic diagram of the pCAMBIA1301-Cas9-TMS5-gRNA construct. LB: left border; RB: right border."

Fig. 3

Identification of the pCAMBIA1301-Cas9-TMS5-gRNA plasmid by restriction enzyme digestion and PCR A: identification of the pCAMBIA1301-Cas9-TMS5-gRNA plasmid digested with Kpn I and Hind III; B: identification of the pCAMBIA1301-Cas9-TMS5-gRNA plasmid in Agrobacterium tumefaciens by PCR with primers of GUS-JC-F and GUS-JC-R. M: DL2000; 1: 18T-Cas9-TMS5-gRNA; 2: pCAMBIA1301; 3: pCAMBIA1301-Cas9-TMS5-gRNA."

Supplementary Fig. 1

Analysis of mutation sequences of target The red letters are the target genome sequences; the blue letters are PAM; the green letters are the insert base; +: Insertion; WT: Wild-type; Ho: homozygous mutation; He: heterozygous mutation."

Fig. 4

Identification of the transgenic plants A: identification of the positive transgenic plants by PCR; B: identification of the positive transgenic plants by GUS histochemical staining. M: DL2000; +: positive control; 1-18: transgenic plants."

Fig. 5

Mutation types and frequencies at the TMS5 loci in T0 transgenic plants A: Sequence alignment of homozygous mutation types; B: Frequency of different base inserts in homozygous mutation types. The red letters are the target genome sequences; The blue letters are PAM; The green letters are the insert base."

Fig. 6

Pollen fertility and seed setting rate of wild-type (WT) and tms5 mutant at different temperatures treatments Data are presented as average values ± standard error of the mean. **, significant difference between tms5 mutant and WT (P < 0.01)."

Table 2

Agronomic traits of the wild-type (WT) and tms5 mutant grown in paddy ?eld"

株系
Line
株高
Plant height
(cm)
千粒重
1000-grain weight
(g)
有效穗
Panicle number
per plant
结实率
Seed setting rate
(%)
单株产量
Grain yield per plant
(g)
WT 78.96±3.56 20.82±0.97 9.3±1.87 72.21±3.57 17.30±1.09
tms5 78.57±3.87 21.20±0.88 9.85±1.79 61.60±3.43** 15.22±1.05**
[1] 周海, 周明, 杨远柱, 曹晓风, 庄楚雄 . RNase ZS1加工UbL40 mRNA控制水稻温敏雄性核不育. 遗传, 2014,36:1274
Zhou H, Zhou M, Yang Y Z, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice . Hereditas( Beijing), 2014,36:1274 (in Chinese)
[2] 袁隆平 . 我国两系法杂交水稻研究的形势、任务和发展前景. 农业现代化研究, 1997,18(1):1-3
Yuan L P . Current status and developing prospects in two-line hybrid rice research in China. Res Agric Modernization, 1997,18(1):1-3 (in Chinese with English abstract)
[3] Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014,5:4884
doi: 10.1038/ncomms5884 pmid: 25208476
[4] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V . Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015,32:76-84
doi: 10.1016/j.copbio.2014.11.007
[5] Baltes N J, Voytas D F . Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015,33:120-131
doi: 10.1016/j.tibtech.2014.11.008
[6] 瞿礼嘉, 郭冬姝, 张金喆, 秦跟基 . CRISPR/Cas系统在植物基因组编辑中的应用. 生命科学, 2015, ( 1):64-70
Qu L J, Guo D S, Zhang J Z, Qin G J . The application of CRISPR/Cas system in plant genome editing. Chin Bull Life Sci, 2015, ( 1):64-70 (in Chinese with English abstract)
[7] Wiedenheft B, Sternberg S H, Doudna J A . RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338
doi: 10.1038/nature10886
[8] Symington L S, Gautier J . Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011,45:247-271
doi: 10.1146/annurev-genet-110410-132435
[9] Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X , X J J, Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688
doi: 10.1038/nbt.2650 pmid: 23929338
[10] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232
doi: 10.1038/nbt.2501 pmid: 23360964
[11] Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X . Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:16139
doi: 10.1038/nplants.2016.139 pmid: 27618611
[12] Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q . Generation of targeted point mutations in rice by a modified CRISPR/CAS9 system. Mol Plant, 2017,10:526-529
doi: 10.1016/j.molp.2016.12.001 pmid: 27940306
[13] Lu Y, Zhu J K . Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant, 2017,10:523-525
doi: 10.1016/j.molp.2016.11.013 pmid: 27932049
[14] Xie K, Zhang J, Yang Y . Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant, 2014,7:923-926
doi: 10.1093/mp/ssu009 pmid: 24482433
[15] Lin J Z, Zhou B, Yang Y Z, Mei J, Zhao X Y, Guo X H, Huang X Q, Tang D Y, Liu X M . Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep, 2009,28:1065-1074
doi: 10.1007/s00299-009-0706-2 pmid: 19455339
[16] Zhang H, Xu C X, He Y, Zong J, Yang X J, Si H M, Sun Z X, Hu J P, Liang W Q, Zhang D B . Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci USA, 2013,110:76-81
doi: 10.1073/pnas.1213041110
[17] Zhou Y B, Liu H, Zhou X C, Yan Y Z, Du C Q, Li Y X, Liu D R, Zhang C S, Deng X L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M . Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed, 2014,34:335-349
[18] Liu W, Xie X, Ma X, Li J, Chen J, Liu Y G . DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant, 2015,8:1431-1433
doi: 10.1016/j.molp.2015.05.009
[19] Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E D, Jiang D G, Zhao B R, Zhuang C X . Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:37395
doi: 10.1038/srep37395
[20] Li M R, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q . Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci, 2016,7:377
doi: 10.3389/fpls.2016.00377 pmid: 27066031
[21] Svitashev S, Schwartz C, Lenderts B, Young J K, Ciqan A M . Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun, 2016,7:13274
doi: 10.1038/ncomms13274 pmid: 27848933
[22] Feng C, Yuan J, Wang R, Liu Y, Birchler J A, Han F P . Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics, 2016,43:37-43
doi: 10.1016/j.jgg.2015.10.002
[23] Shan Q W, Wang Y P, Li J, Gao C X . Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 2014,9:2395-2410
doi: 10.1038/nprot.2014.157
[24] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32:947-951
doi: 10.1038/nbt.2969
[25] Cai Y P, Chen L, Liu X J, Sun S, Wu C X, Jiang B J, Han T F, Hou W S . CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064
doi: 10.1371/journal.pone.0136064
[26] Jacobs T B , LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015,15:16
doi: 10.1186/s12896-015-0131-2
[27] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821
doi: 10.1126/science.1225829
[28] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G . A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284
doi: 10.1016/j.molp.2015.04.007
[29] Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K . The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014,12:797-807
doi: 10.1111/pbi.2014.12.issue-6
[30] 杨远柱, 符辰建, 胡小淳, 张章, 周永祥, 宋永帮 . 株1S温敏核不育基因的发现及超级杂交早稻育种研究. 中国稻米, 2007, ( 6):17-22
doi: 10.3969/j.issn.1006-8082.2007.06.005
Yang Y Z, Fu C J, Hu X C, Zhang Z, Zhou Y X, Song Y B . Discovery of thermo-sensitive genic male sterile genes of Zhu1S and study on super hybrid early rice breeding. China Rice, 2007, ( 6):17-22 (in Chinese)
doi: 10.3969/j.issn.1006-8082.2007.06.005
[31] 李必湖, 吴厚雄, 徐孟亮, 梁满中, 张振华, 陈良碧 . 温敏核不育水稻育性对低温持续时间的敏感性差异比较研究. 作物学报, 2003,29:930-936
doi: 10.3321/j.issn:0496-3490.2003.06.023
Li B H, Wu H X, Xu M L, Liang M Z, Zhang Z H, Chen L B . Comparative studies on the sensitivity of fertility of TGMS rice lines to low temperature of consecutive time. Acta Agron Sin, 2003,29:930-936 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2003.06.023
[32] Xing Y Z, Zhang Q F . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!