Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 852-858.doi: 10.3724/SP.J.1006.2018.00852
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Li-Juan AI1,2,Qiang CHEN2,Chun-Yan YANG2,Long YAN2,Feng-Min WANG2,Rong-Chao GE1,*(),Meng-Chen ZHANG2,*()
[1] |
孙星邈, 王政, 李曙光, 孟凡凡, 王曙明, 张井勇 . 大豆硬实形成机制与破除技术的研究进展. 大豆科技, 2014, ( 3):23-27
doi: 10.3969/j.issn.1674-3547.2014.03.007 |
Sun X M, Wang Z, Li S G, Meng F F, Wang S M, Zhang J Y . Progress on formation mechanism and breaking methods of hard seed in soybean. Soybean Sci Technol, 2014, ( 3):23-27 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3547.2014.03.007 |
|
[2] |
Ladizinsky G . The origin of lentil and its wild genepoo. Euphytica, 1979,28:179-187
doi: 10.1007/BF00029189 |
[3] | Abbo S, Shtienberg D, Lichtenzveig J, Lev-Yadun S, Gopher A . The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east. Q Rev Biol, 2003, 78:435 |
[4] |
Weeden N F . Genetic changes accompanying the domestication of pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot, 2007,100:1017-1025
doi: 10.1109/55.215086 pmid: 17660515 |
[5] | Andargie M, Pasquet R S, Gowda B S, Muluvi G M, Timko M P . Molecular mapping of QTLs for domestication-related traits in cowpea [ V. unguiculata( L.) Walp.]. Euphytica, 2014,200:401-412 |
[6] |
Potts H C, Duangpatra J, Hairston W G, Delouche J C . Some influences of hardseededness on soybean seed quality. Crop Sci, 1978,18:221-224
doi: 10.2135/cropsci1978.0011183X001800020006x |
[7] | Meyer C J, Steudle E, Peterson C A . Patterns and kinetics of water uptake by soybean seeds. J Exp Bot, 2007,58:717-732 |
[8] | Mullin W J, Xu W . Study of soybean seed coat components and their relationship to water absorption. J Agric Food Chem, 2001, 49:5331-5335 |
[9] |
Zhang B, Chen P Y, Chen C Y, Wang D C, Shi A N, Hou A F, Ishibashi T . Quantitative trait loci mapping of seed hardness in soybean. Crop Sci, 2008,48:1341-1349
doi: 10.2135/cropsci2007.10.0544 |
[10] |
Rolston M P . Water impermeable seed dormancy. Bot Rev, 1978,44:365-396
doi: 10.1007/BF02957854 |
[11] | Foley M E . Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Sci, 2017,49:305-317 |
[12] | Saio K, Arai K, Watanabe T . Fine structure of soybean seed coat and its changes on cooking. Cereal Sci Today, 1973,18:197-201 |
[13] |
Saio K . Soybeans resistant to water absorption. Cereal Foods World, 1976,21:168-173
doi: 10.1007/BF02591040 |
[14] |
Ting C L . Genetic studies on the wild and cultivated soybeans. J Am Soc Agron, 1946,38:381-393
doi: 10.2134/agronj1946.00021962003800050001x |
[15] | Kilen T C, Hartwig E E . An inheritance study of impermeable seed in soybean. Field Crops Res, 1978, 1:65-70 |
[16] | Marjushkin V F, Sichkar V I, Michailov V G, Polivoda V G . Inheritance of hard seedness in soybean. Soybean Genet Newsl, 1988,15:294-297 |
[17] |
Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K . Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci, 2004,54:399-407
doi: 10.1270/jsbbs.54.399 |
[18] | Keim P, Diers B W, Shoemaker R C . Genetic analysis of soybean hard seededness with molecular markers. Theor Appl Genet, 1990,79:465-469 |
[19] | Sun L J, Miao Z Y, Cai C M, Zhang D J, Zhao M X, Wu Y Y, Zhang X L, Swarm S A, Zhou L W , Zhang Z J Y, Nelson R L, Ma J X. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet, 2015,47:939 |
[20] |
Jang S J, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Benitez E R, Liu B H, Yamada T, Abe J . A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS One, 2015,10:e0128527
doi: 10.1371/journal.pone.0128527 pmid: 4454576 |
[21] |
雷东阳, 谢放鸣, 徐建龙, 陈立云 . 稻米粒形和垩白度的QTL定位和上位性分析. 中国水稻科学, 2008,22:255-260
doi: 10.3321/j.issn:1001-7216.2008.03.006 |
Lei D Y, Xie F M, Xu J L, Chen L Y . QTLs mapping and epistasis analysis for grain shape and chalkiness degree of rice. Chin J Rice Sci, 2008,22:255-260 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2008.03.006 |
|
[22] |
Soyk S, Lemmon Z H, Oved M, Fisher J, Liberatore K L, Park S J, Goren A, Jiang K, Ramos A , Van der Knaap E, Van Eck J, Zamir D, Eshed Y, Lippman Z B. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017,169:1142-1155
doi: 10.1016/j.cell.2017.04.032 |
[23] | Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J . QTL mapping of domestication-related traits in soybean ( Glycine max). Ann Bot, 2007,100:1027-1038 |
[24] |
陈强 . 大豆籽粒相关性状QTL定位分析 . 河北科技师范学院硕士学位论文, 河北秦皇岛, 2014
doi: 10.7666/d.Y2762071 |
Chen Q . QTL Mapping for Seed Related Traits in Soybean (Glycine max L. Merr.) . MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2014 ( in Chinese with English abstract)
doi: 10.7666/d.Y2762071 |
|
[25] |
雷雅坤, 闫龙, 杨春燕, 宋晓坤, 张孟臣, 黄占景 . 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012,27:5-10
doi: 10.3969/j.issn.1000-7091.2012.06.002 |
Lei Y K, Yan L, Yang C Y, Song X K, Zhang M C, Huang Z J . Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012,27:5-10 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7091.2012.06.002 |
|
[26] |
McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M . Microsatellite marker development, mapping and application in rice genetics and breeding. Plant Mol Biol, 1997,35:89-99
doi: 10.1023/A:1005711431474 pmid: 9291963 |
[27] | 牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青春, 刘兵, 章元明 . 大豆粒形性状QTL的精细定位. 作物学报, 2013,39:609-616 |
Niu Y, Xie F T, Bu S H, Xie S Q, Han S F, Geng Q C, Liu B, Zhang Y M . Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agron Sin, 2013,39:609-616 (in Chinese with English abstract) | |
[28] |
Hagiwara W E, Onishi K, Takamure O I, Sano Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35
doi: 10.1007/s10681-006-9085-8 |
[29] |
Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G . Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice ( Oryza sativa L.). Field Crops Res, 2005,91:161-170
doi: 10.1016/j.fcr.2004.06.004 |
[30] |
Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L . Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,95:799-808
doi: 10.1007/s001220050628 |
[31] |
Lehner B . Molecular mechanisms of epistasis within and between genes. Trends Genet, 2011,27:323-331
doi: 10.1016/j.tig.2011.05.007 |
[32] |
Cho Y B, Jones S I, Vodkin L O . Mutations in argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell, 2017,29:708
doi: 10.1105/tpc.17.00162 pmid: 28351993 |
[33] |
Carlborg O, Haley C S . Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004,5:618
doi: 10.1038/nrg1407 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[5] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[6] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[7] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[8] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[9] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[10] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[11] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[12] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[13] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[14] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[15] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
|