Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 297-305.doi: 10.3724/SP.J.1006.2018.00297

• Orginal Article • Previous Articles     Next Articles

Homologous Cloning of BnGS3 and BnGhd7 Genes in Brassica napus and Their Relationship with Rapeseed Yield-related Traits

Zhi-Fei XUE, Xia WANG, Fu-Peng LI, Chao-Zhi MA*()   

  1. College of Plant Science and Technology of Huazhong Agricultural University / National Key Laboratory of Crop Genetic Improvement / National Research Center of Rapeseed Engineering and Technology, Wuhan 430070, Hubei, China;
  • Received:2017-04-19 Accepted:2017-11-21 Online:2018-02-12 Published:2017-12-04
  • Contact: Chao-Zhi MA E-mail:yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0100803).

Abstract:

Brassica napus is an allotetraploid with complex genomic structure, but Brassica genome has a collinearity with that of rice. In this study, the homologous genes BnGS3 and BnGhd7 of Brassica napus were obtained by homologous cloning of the yield related genes GS3 and Ghd7 of rice. BnGS3 has six exons with a 666 bp of ORF and encodes 222 amino acids. BnGS3 protein has VWF structure, one of the four conserved domains of rice GS3, and belongs to type A. BnGhd7 contains one exon having ORF with a full-length of 1014 bp and encoding 337 amino acids. BnGhd7 protein has two important domains, the N-terminal B-Box and the C-terminal CCT. BnGS3 and BnGhd7 were located in linkage groups A2 and A10, respectively. Polymorphism markers brgs-16 of BnGS3 and polymorphism markers brghd-3 and ghd7-7 of BnGhd7 were obtained by comparative sequencing, among which brghd-3 with thousand kernel weight (P < 0.05) and ghd7-7 with plant height (P <0.01) were positively correlated, and ghd7-7 was negatively correlated with flowering stage (P < 0.05). The results indicate that it is feasible to clone the homologous genes of Brassica napus using rice functional gene sequence information, which provides an effective way in Brassica napus functional gene research.

Key words: Brassica napus, homologous cloning, yield, comparative sequencing, correlation analysis

Supplementary table 1

Primers used in homologous clonging of BnGS3 and BnGhd7"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
退火温度
Tm (°C)
bngs-1-1 TACTCATCCTCCTCCTCC CGCTCATCATCGAGAACT 55
bngs-1-2 GCGTAATGCCTCAGCTAC GACCCATCATCATCGAGA 55
bngs-1-3 GCATGATGCTTTCACCAC CGATCATCATCGAGAACT 55
gs3-1 TGTTAGGGTTTCTGTTGGTGG CCAGATGCTGCAAAGAGTAAG 59
gs3-2 GGGTTTCTGTTGGTGGGCTT CCCATGAGGTATGTCAGCAT 59
gs3-3 TTCTAGACAATGAATGGCAGG ACGAAAGAGTCGACGACACTG 58
gs3-4 TTCTAGACAATGAATGGCAG TGCAACTGCAAGATCAAATG 59
gs3-5 CCGCAGCGGAAAAGGTATGT GTCCAGATGCTGCAAAGAGT 59
ghd7-2-4 CCAAAAGCCAACGTCACCAT GCGATCAGCGACCATTAAAG 56
ghd7-2-5 CCAAAAGCCAACGTCACCAT GGAGCGACCGAAAACTACAT 54
ghd7-2-6 TCCCTCACCAACAACAAACC ATCCTTGGTCTTTTCTCTGC 55
ghd7-1 CAAAAGCCAACGTCACCATC CGACCATTAAAGAACAGGCT 58
ghd7-2 TTCGGATTCGGTTCTGGTTC GCTCACATGATTGACAGACT 59
ghd7-3 AGCAGAGGCGGCTTCTTGGT GCGATCAGCGACCATTAAAG 59
ghd7-4 CCAAAAGCCAACGTCACCAT GCGATCAGCGACCATTAAAG 58
ghd7-5 CCAAAAGCCAACGTCACCAT GGAGCGACCGAAAACTACAT 59
ghd7-6 TCCCTCACCAACAACAAACC ATCCTTGGTCTTTTCTCTGC 59
ghd7-7 GGGTTGTTCCACTTCAGGTT ACCCATGGAAAGTGGTAGAT 59
ghd7-8 CAAAAGCCAACGTCACCATC CATCCGATATTTTTGTCTCC 60
ghd7-9 GATCCATCACGGGCCATAAC GGGTTTGAAACTGTTGTCTC 59

Fig. 1

Amplification results of primers designed according to homologous sequences A: amplification profile in rice (lanes 1-3) and B. napus (lanes 4-6) with primers designed from rice GS3 gene sequence. M: DL2000 marker; Lanes 1 and 4: primer bngs-1-1; Lanes 2 and 5: primer bngs-1-2; Lanes 3 and 6: primer bngs-1-3. B: amplification profile in B. napus SI-1300 with primers designed from B. rapa AC189411.2 gene sequence. M: DL2000 marker; 1: primer gs3-2; 2: primer gs3-3; 3: primer gs3-5."

Fig. 2

Prediction of BnGS3 gene construction by FGENSH 2.0 TSS: transcription start site; CDSf: start coding site of the first exon; CDSi: inter exons of coding sequence; CDSo: only one exon of coding sequence; CDSI: last exon of coding sequence; Poly A: the site of termination of transcription; numbers indicate the site of base pair."

Fig. 3

Amplification of primers ghd7-2, ghd7-5, ghd7-6, ghd7-7, and ghd7-9 in B. napus SI-1300 M: DNA ladder DL2000; 1: ghd7-2; 2: ghd7-5; 3: ghd7-6; 4: ghd7-7; 5: ghd7-9."

Fig. 4

Prediction of BnGhd7 gene construction by FGENSH 2.0 TSS: transcription start site; CDSf: start coding site of the first exon; CDSi: inter exons of coding sequence; CDSo: only one exon of coding sequence; CDSI: last exon of coding sequence; Poly A: the site of termination of transcription; numbers indicate the site of base pair."

Supplementary table 2

Primers used in detecting BnGS3 and BnGhd7 polymorphic alleles"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
退火温度
Tm (°C)
gs3-2 GGGTTTCTGTTGGTGGGCTT CCCATGAGGTATGTCAGCAT 59
gs3-5 CCGCAGCGGAAAAGGTATGT GTCCAGATGCTGCAAAGAGT 59
gs3-3 TTCTAGACAATGAATGGCAGG ACGAAAGAGTCGACGACACTG 58
brgs-1 TAGTTTGGTGCTCACTCCTG TCCTGCCATTCATTGTCTAG 57
brgs-2 TAGACAATGAATGGCAGGAT CTACCTTCGACCACAACCAG 58
brgs-3 CGCCTCAACGAAGACTGGTT ACGTCTGAGATGATCAAATG 59
brgs-4 ATGTTGCCGTTGACCACGAT CTGCAAGATCAAATGGTCAT 60
brgs-5 TCGACTGCAACTGCGGAAAC GGCGAGTTTCTGCTGTTGTT 60
brgs-6 CACGCTCAAACACGGGAAAC CCCAATGATACCTGCGTAAG 61
brgs-7 TTGCCTCGCCGTCGGTTAGT CCTCGCTTCGAATCAACACG 59
brgs-8 CGAAGCCTCGTGGGTGTTAG GGATCCAACTTGGTGATCAG 60
brgs-9 GTTGGATCCGTACCGTACAT AGCAATGATATCGGTTTGGT 58
brgs-10 TCTCAAATTTGATGGGAAGC CCCATGAGGTATGTCAGCAT 59
brgs-11 GCTGACATACCTCATGGGAG GTTGCTGTTGTTCTTGTCCG 58
brgs-12 CTTTCGTTGTCTGCCCGGAT GGACCATATACATGTTCACC 58
brgs-13 TCTATGAAAGCAACATGACG GCACCGTTGTGTTATGTTTG 60
引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
退火温度
Tm (°C)
brgs-14 TTCTAGACAATGAATGGCAG AGAACACAAAAACGTACGTC 60
brgs-15 TAAAGCTGAGAGCAGACTTG GTCGACCATCATGTCTTAAT 58
brgs-16 CAACAAAGTCGTAGCTTAGG ATTCTGACCCAATGATACCT 59
brgs-17 CTTTCGTTGTCTGCCCGGAT GGTGTTAGTTCGTGCATGTG 59
brgs-18 GTATATGGTCCTTTCAAACG TTGCCCACTCAAATTAATTG 58
ghd7-2 TTCGGATTCGGTTCTGGTTC GCTCACATGATTGACAGACT 59
ghd7-5 CCAAAAGCCAACGTCACCAT GGAGCGACCGAAAACTACAT 59
ghd7-6 TCCCTCACCAACAACAAACC ATCCTTGGTCTTTTCTCTGC 59
ghd7-7 GGGTTGTTCCACTTCAGGTT ACCCATGGAAAGTGGTAGAT 59
ghd7-9 GATCCATCACGGGCCATAAC GGGTTTGAAACTGTTGTCTC 59
brghd-1 TTATGTCGGGTTCGAATCGT ATGGTTGGTCAAACGTGTAT 60
brghd-2 TTGATGCAGAGGAGGCAGAC TTCACCAAGAAAGCAATCAC 60
brghd-3 TTATGTCGGGTTCGAATCGT ATGGTTGGTCAAACGTGTAT 58
brghd-7 ACTTTATGTTGCCGTTGACC GCAACTGCAAGATCAAATGG 60
brghd-8 CATGATGGTCGACTGCAACT GCGAGTTTCTGCTGTTGTTG 57

Fig. 5

Schematic diagram of BnGS3 comparative sequencing*: point mutation; -: small deletion; ^: point mutations concentrated area."

Fig. 6

Sequence alignment of amplified fragments in accessions by primer brgs-16"

Fig. 7

Schematic diagram of BnGhd7 comparative sequencing*: point mutation; —: long fragment deletion."

Fig. 8

Alignment of the sequencing results of brghd-3"

Table 1

Variations of nine yield-related traits in 57 B. napus inbred lines"

性状
Trait
平均数
Average
标准差
SD
变异区间
Variation interval
变异系数
CV (%)
武汉点 Wuhan location
株高 Plant height (cm) 146.66 13.70 93.53-169.60 9.34
一次有效分枝 Number of primary branch 6.19 1.08 4.40-9.67 17.37
单株角果数 Number of siliques per plant 206.60 45.76 134.60-312.20 22.15
角果粒数 Number of seeds per silique 19.51 3.89 10.30-28.11 19.91
单株产量 Yield per plant (g) 10.91 2.34 5.25-16.36 21.42
小区产量 Plot yield (g) 452.69 94.12 209.31-694.48 20.79
千粒重 Thousand-seed weight (g) 3.62 0.58 2.28-5.07 16.08
播种-初花期天数 Days from sowing to initial bloom 159.19 4.87 151.00-168.00 3.06
初花期-终花期天数 Days from initial bloom to end flowering 17.19 4.53 9.00-26.00 26.37
黄冈点 Huanggang location
株高 Plant height (cm) 162.26 14.60 89.73-191.53 9.00
一次有效分枝 Number of primary branch 6.49 1.18 3.47-9.67 18.18
单株角果数 Number of siliques per plant 206.25 39.89 116.60-308.93 19.34
角果粒数 Number of seeds per silique 20.60 4.00 12.81-32.49 19.45
单株产量 Yield per plant (g) 13.40 2.14 9.72-18.02 15.95
小区产量 Plot yield (g) 558.95 102.46 311.37-842.05 18.33
千粒重 Thousand-seed weight (g) 3.77 0.62 2.25-5.43 16.46
播种-初花期天数 Days from sowing to initial bloom 158.13 8.88 135.00-171.67 5.61
初花期-终花期天数 Days from initial bloom to end flowering 27.04 7.09 17.00-49.00 26.21

Table 2

Correlation coefficients between markers and traits (site: Huanggang)"

性状 Trait brgs-16 brghd-3 ghd7-7
株高 Plant height 0.01 -0.05 0.34**
一次有效分枝 Number of first branches 0.10 0.08 0.17
单株角果数 Number of siliques per plant 0.06 -0.01 0.12
角果粒数 Number of seeds per silique -0.11 -0.20 -0.05
单株产量 Yield per plant 0.00 -0.13 -0.06
小区产量 Plot yield 0.18 -0.05 0.21
千粒重 Thousand-seed weight 0.12 0.30* 0.14
播种-初花期天数 Days from sowing to initial bloom -0.06 -0.13 0.25
初花期-终花期天数 Days from initial bloom to end flowering 0.10 0.16 -0.32*

Supplementary fig. 1

brgs-15 located in linkage group A2"

Supplementary fig. 2

ghd7-7 located in linkage group A10"

[1] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M.Early allopolyploid evolution in the post-neolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953
[2] Nagaharu U.Genome analysis in Brassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389-452
[3] Devos K M, Gale M D.Genome relationships: the grass model in current research.Plant Cell, 2000, 12: 637-646
[4] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
[5] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation inGhd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
[6] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of theGS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584
[7] Wang C, Chen S, Yu S.Functional markers developed from multiple loci inGS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2011, 122: 905-913
[8] Trick M, Long Y, Meng J, Bancroft I.Single nucleotide polymorphism (SNP) discovery in the polyploidBrassica napus using Solexa transcriptome sequencing. Plant Biotechnol J, 2009, 7: 334-346
[9] 李媛媛, 陈庆芳, 傅廷栋, 马朝芝. 利用SSCP技术分析甘蓝型油菜10个功能基因序列差异. 作物学报, 2012, 38: 43-49
Li Y Y, Chen Q F, Fu T D, Ma C Z.Polymorphism analysis of ten functional genes inBrassica napus using SSCP method. Acta Agron Sin, 2012, 38: 43-49 (in Chinese with English abstract)
[10] Thompson J D, Gibson T, Higgins D G.Multiple sequence alignment using ClustalW and ClustalX. In: Current Protocols in Bioinformatics, John Wiley and Sons, 2002. pp 2-3
[11] Shahmuradov I A, Gammerman A J, Hancock J M, Bramley P M, Solovyev V V.PlantProm: a database of plant promoter sequences.Nucl Acids Res, 2003, 31: 114-117
[12] Zdobnov E M, Apweiler R.InterProScan: an integration platform for the signature-recognition methods in InterPro.Bioinformatics, 2001, 17: 847-848
[13] Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R.InterProScan: protein domains identifier.Nucleic Acids Res, 2005, 33: W116-W120
[14] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L.MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics, 1987, 1: 174-181
[15] Lincoln S E, Daly M J, Lander E S.Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. In: A Whitehead Institute for Biomedical Research Technical Report, 1993. pp 78-79
[16] Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature, 2000, 408:796
[17] Meyerowitz E M.Prehistory and history of Arabidopsis research.Plant Physiol, 2001, 125: 15-19
[18] Zhang Q, Li J, Xue Y, Han B, Deng X W.Rice 2020: a call for an international coordinated effort in rice functional genomics.Mol Plant, 2008, 1: 715-719
[19] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of theGS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584
[20] Wang C, Chen S, Yu S.Functional markers developed from multiple loci inGS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2011, 122: 905-913
[21] Abreu J G, Coffinier C, Larraın J, Oelgeschläger M, De Robertis E M. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems.Gene, 2002, 287: 39-47
[22] O’Leary J M, Hamilton J M, Deane C M, Valeyev N V, Sandell L J, Downing A K. Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA.J Biol Chem, 2004, 279: 53857-53866
[23] Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y.Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice.Plant J, 2003, 36: 82-93
[24] Miller T A, Muslin E H, Dorweiler J E.A maize CONSTANS- like gene,conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008, 227: 1377-1388
[25] Li Y, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C.QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust J Agric Res, 2007, 58: 759-766
[26] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J.Unraveling the complex trait of crop yield with quantitative trait loci mapping inBrassica napus. Genetics, 2009, 182: 851-861
[27] Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T.A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content.Theor Appl Genet, 2006, 114: 67-80
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!