Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1829-1836.doi: 10.3724/SP.J.1006.2018.01829

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Spatio-temporal Expression of Bt Protein and Stem Borer Resistance of Transgenic Early Japonica Rice with cry1C* or cry2A* Gene

Rong-Tian LI1,Xin-Yu WANG1,Chong-Bing TIAN1,Qing ZHOU1,Chang-Hua LIU1,2,*()   

  1. 1 Key Laboratory of Molecular Biology, College of Heilongjiang Province / Heilongjiang University, Harbin 150080, Heilongjiang, China
    2 College of Agricultural Resources and Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2018-01-23 Accepted:2018-08-20 Online:2018-12-12 Published:2018-09-29
  • Contact: Chang-Hua LIU E-mail:liuchanghua70@163.com
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08001001-001-007);the National Major Project for Developing New GM Crops(2014AA10A600);the Open Project of Key Laboratory of Molecular Biology, College of Heilongjiang Province

Abstract:

The early japonica rice Kongyu 131 (Oryza sativa) was transformed with cry1C* or cry2A* gene driven by ubi promoter using Agrobacterium tumefaciens mediated method to create the transgenic early japonica rice Kongyu 131 (cry1C*) and Kongyu 131 (cry2A*). The experiments were conducted by transplanting the different lines of Kongyu 131 (cry1C*) and Kongyu 131 (cry2A*) from independent transformation events in the field to detect Bt protein content (BPC) of organs of the transgenic rice at different growth stages with enzyme-linked immune sorbent assay (ELISA) and resistance to rice striped stem borer as evidenced by insect feeding bioassays. The BPC of cry1C* gene was always lower than that of cry2A* in early japonica rice. There was a difference in BPC at different growth stages of transgenic rice, displaying tillering stage < heading stage < filling stage in leaf blade or sheath-stem and heading stage > filling stage > maturity in young panicle or brown rice. BPC of organs of transgenic rice was different at every stage, the order of BPC from high to low was leaf blade and sheath-stem at tillering stage, leaf blade, young panicle and sheath-stem at heading stage, leaf blade, sheath-stem, young panicle and brown rice at filling stage and maturity. There were some obvious differences in BPC of leaf blade, sheath-stem and young panicle at heading stage or brown rice at maturity and in borer-resistant property among transgenic lines with cry1C* or cry2A*. Correlations between BPC of each organ at heading stage and borer-resistant property or BPC of brown rice were not found in transgenic rice lines with cry1C* or cry2A*. The BPC increased in vegetative organs while descended in reproductive organs in the process of growth and development, and BPC of vegetative organs was usually higher than BPC of reproductive organs in both of Kongyu 131 (cry1C*) and Kongyu 131 (cry2A*). All transgenic early japonica rice showed effective resistance to stem borer in the experiment, though there was significant difference in BPC either between cry1C* and cry2A* genes or among transgenic rice lines.

Key words: cry1C* gene, cry2A* gene, transgenic early japonica rice, Bt protein content, spatio-temporal expression, stem borer resistance

Fig. 1

T-DNA region of Ti plasmid pBar13-cry1C*(A) and pBar13-cry2A*(B) RB: right border; ubi: ubi promoter; cry1C*: cry1C * gene; cry2A*: cry2A * gene; 35S: CaMV35S promoter; bar: phosphinothricin acetyltransferase gene; LB: left border."

Fig. 2

Bt protein content of HD1 and HD2 of transgenic early japonica rice A: leaf blade; B: sheath-culm; C: young panicle or brown rice; BPC: Bt protein content. *, **: significant at P < 0.05 and P < 0.01, respectively."

Fig. 3

Bt protein content of the transgenic early japonica rice among the different growth stages A: leaf blade; B: sheath-culm; C: young panicle or brown rice; BPC: Bt protein content. *, **: significant at P < 0.05 and P < 0.01, respectively."

Fig. 4

Bt protein content of the transgenic early japonica rice at different growth stages A: tillering stage; B: heading stage; C: filling stage and maturity; BPC: Bt protein content. **: significant at P < 0.01."

Table 1

Bt protein content and resistance to stem borer in different lines of transgenic early japonica rice"

品系
Line
叶片Bt蛋白量
BPC of leaf blade (μg g-1)
茎鞘Bt蛋白量
BPC of sheath-culm
(μg g-1)
幼穗Bt蛋白量
BPC of young panicle (μg g-1)
糙米Bt蛋白量
BPC of brown rice (μg g-1)
校正幼虫死亡率
Adjusted larval mortality rate (%)
HD1-1 5.33±0.04** 0.50±0.03** 0.52±0.02** 0.09±0.01** 96.46±1.42**
HD1-2 2.74±0.03** 0.49±0.02** 0.51±0.03** 0.15±0.02** 91.34±1.02**
HD1-3 1.16±0.02** 0.44±0.03** 0.43±0.03** 0.06±0.02** 92.08±2.70**
HD1-4 1.16±0.02** 0.31±0.03** 0.36±0.02** 0.10±0.02** 96.20±1.06**
HD2-1 21.81±0.02** 2.87±0.04** 3.95±0.02** 0.33±0.03** 94.21±1.05**
HD2-2 29.65±0.02** 5.69±0.02** 4.73±0.02** 0.24±0.02** 93.73±3.55**
HD2-3 21.63±0.04** 3.63±0.02** 4.02±0.05** 0.55±0.03** 91.56±4.10**
HD2-4 49.63±0.06** 4.64±0.02** 5.43±0.04** 0.13±0.03** 98.06±0.88**

Table 2

Relationship of Bt protein content of the organs at heading stage and brown rice with insect-resistance among the lines of transgenic early japonica rice"

转基因早粳稻
Transgenic early japonica rice
抽穗期性状
Characteristic at heading stage
成熟期糙米Bt蛋白量
BPC of brown rice at maturity
校正幼虫死亡率
Adjusted larval mortality rate
HD1 叶片Bt蛋白量 BPC of leaf blade 0.233 0.375
茎鞘Bt蛋白量 BPC of sheath-culm 0.254 -0.389
幼穗Bt蛋白量 BPC of young panicle 0.381 -0.267
HD2 叶片Bt蛋白量 BPC of leaf blade -0.796 0.910*
茎鞘Bt蛋白量 BPC of sheath-culm -0.533 0.250
幼穗Bt蛋白量 BPC of young panicle -0.827 0.838
[1] Zhang Q F . Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104:16402-16409
doi: 10.1073/pnas.0708013104
[2] 高家旭, 蓝天琼, 刘成家, 王文华 . 不同药剂对水稻螟虫防治效果初探. 农业与技术, 2015,35(7):47
Gao J X, Lan J Q, Liu C J, Wang W H . Study on the control efficiency to rice borers using the different medicaments. Agric Technol, 2015,35(7):47 (in Chinese)
[3] 戈峰, 李典谟 . 可持续农业中的害虫管理问题. 昆虫知识, 1997,34(1):39-45
Ge F, Li D M . Management problem of pest in sustainable agriculture. Entomol Knowledge, 1997,34(1):39-45 (in Chinese)
[4] 魏俊杰 . Bt毒蛋白在转基因植物中的表达. 安徽农学通报, 2012,18(6):26-27
doi: 10.3969/j.issn.1007-7731.2012.06.014
Wei J J . The expression of Bt toxin protein in transgenic plants. Anhui Agric Sci Bull, 2012,18(6):26-27 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-7731.2012.06.014
[5] 林良斌, 官春 . Bt毒蛋白基因与植物抗虫基因工程. 生物工程进展, 1997,17(2):51-55
Lin L B, Guan C . Bt toxic protein gene and gene engineering of insect-resistant plant. Prog Biotechnol, 1997,17(2):51-55 (in Chinese with English abstract)
[6] Newell C A, Lowe J M, Merryweather A . Transformation of sweet potato with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci, 1995,107:215-227
[7] Gatehouse A M R, Down R E, Powell K S . Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 2015,79:295-307
doi: 10.1111/j.1570-7458.1996.tb00837.x
[8] 杨长登, 唐克轩, 吴连斌, 李瑶, 赵成章, 刘光杰, 沈大棱 . 农杆菌介导将雪花莲凝集素(GNA)基因转入籼稻单倍体微芽的初步研究. 中国水稻科学, 1998,12:129-133
Yang C D, Tang K X, Wu L B, Li Y, Zhao C Z, Liu G J, Shen D L . Transformation of haploid indica rice shoots with snowdrop lectin gene(GNA) by agrobacterium-mediated. Chin J Rice Sci, 1998,12:129-133 (in Chinese with English abstract)
[9] Zhu X S, Zhang T F, Zhu Y X . Cloning and sequencing of two depressant insect selective neurotoxin cDNAs from Buthus martensii Karsch. Chin Sci Bull, 1996,41:1387-1391
[10] 蒋红, 朱玉贤, 王雅平, 王泽平, 陈章良 . 蜘蛛杀虫肽基因的合成及其在植物中表达质粒的构建. 植物学报, 1995,37:321-325
doi: 10.1007/BF02007173
Jiang H, Zhu Y X, Wang Y P, Wang Z P, Chen Z L . Synthesis of the spider insecticidal gene and construction of the plasmid expressing in plant. Chin Sci Bull, 1995,37:321-325 (in Chinese with English abstract)
doi: 10.1007/BF02007173
[11] 蒋红, 朱玉贤, 陈章良 . 导入蜘蛛杀虫肽基因的烟草具有抗虫性. 植物学报, 1996,38:95-99
Jiang H, Zhu Y X, Chen Z L . Insect resistance of transformed tobacco plants with gene of the spider insecticidal peptide. Chin Sci Bull, 1996,38:95-99 (in Chinese with English abstract)
[12] 朱新生, 朱玉贤 . 抗虫植物基因工程研究进展. 植物学报, 1997,39:282-288
Zhu X S, Zhu Y X . Proceeding in plant anti-insect genetic engineering. Chin Bull Bot, 1997,39:282-288 (in Chinese with English abstract)
[13] Shroeder H E, Gollash S, Moore A . Bean а-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas(Pisum sativum L.). Plant Physiol, 1995,107:1233-1239
[14] 王世贵 . 转Bt杀虫蛋白基因植物及其抗虫性研究进展. 杭州师范学院学报, 2000, ( 3):90-95
Wang S G . Transgenic plants with δ-endotoxic protein gene from Bacillus thuringiensis and their resistance to insects: a review. J Hangzhou Norm Univ, 2000, ( 3):90-95 (in Chinese with English abstract)
[15] Pardo-Lopez L, Soberon M, Bravo A . Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev, 2013,37:3-22
doi: 10.1111/j.1574-6976.2012.00341.x pmid: 22540421
[16] Raymond B, Paul R J, Didier L . Bacillus thuringiensis: an impotent pathogen. Trends Microbiol, 2010,18:189-194
[17] 唐微 . Bt抗虫水稻的培育. 华中农业大学博士学位论文,湖北武汉, 2006
Tang W . Production of Insect-resistant Rice through Bt Genes Transformation. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2006 (in Chinese with English abstract)
[18] Chen H, Tang W, Xu C G, Li X H, Lin Y J, Zhang Q F . Transgenicindica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet, 2005,111:1330-1337
[19] 秦伟, 黄昆仑, 贺晓云, 李欣, 许文涛, 林希瑾, 罗云波 . 水稻密码子优化的cry2A*基因在大肠杆菌中的表达及其表达产物的纯化. 食品科学, 2008,29(7):267-271
Qin W, Huang K L, He X Y, Li X, Xu W T, Lin X J, Luo Y B . Expression of rice codon optimized cry2A* gene in Escherichia coli and purification of its expressed proteins. Food Sci, 2008,29(7):267-271 (in Chinese with English abstract)
[20] Tang W, Chen H, Xu C G, Li X H, Lin Y J, Zhang Q F . Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed, 2006,18:1-10
[21] Ye R J, Huang H Q, Yang Z, Chen T Y, Liu L, Li X H, Chen H, Lin Y J . Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Manage Sci, 2009,65:1015-1020
[22] 吴振映, 柳絮, 王文英, 姚方印, 刘开启 . 利用农杆菌介导法获得转cry2A*抗虫基因水稻的研究. 山东农业科学, 2011, ( 5):1-3
Wu Z Y, Liu X, Wang W Y, Yao F Y, Liu K Q . Development of japonica rice with insect-resistant gene cry2A* by agrobacterium-mediated transformation. Shandong Agric Sci, 2011, ( 5):1-3 (in Chinese with English abstract)
[23] 王家宝, 王留明, 沈法富, 张学坤, 杨静, 刘任重 . 环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响. 山东农业科学, 2000, ( 6):4-6
Wang J B, Wang L M, Shen F F, Zhang X K, Yang J, Liu R Z . Effect of environment elements on Bt-protein content in transgenic Bt cotton. Shandong Agric Sci, 2000, ( 6):4-6 (in Chinese with English abstract)
[24] 夏兰芹, 郭三堆 . 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004,37:1733-1737
Xia L Q, Guo S D . The expression of Bt toxin gene under different thermal treatments. Sci Agric Sin, 2004,37:1733-1737 (in Chinese with English abstract)
[25] 谷淇深, 李志坤, 王省芬, 张艳, 吴立强, 柯会锋, 张桂寅, 马峙英 . Bt抗虫棉新品系毒蛋白表达差异分析, 棉花学报, 2017,29:128-137
doi: 10.11963/issn.1002-7807.201702002
Gu Q S, Li Z K, Wang S F, Zhang Y, Wu L Q, Ke H F, Zhang G Y, Ma Z Y . Differential expression analysis of Bt protein in new Bt cotton lines. Cotton Sci, 2017,29:128-137 (in Chinese with English abstract)
doi: 10.11963/issn.1002-7807.201702002
[26] 矫江, 李禹尧, 中本和夫 . 黑龙江省水稻生产发展区划研究. 黑龙江农业科学, 2012, ( 11):1-4
doi: 10.3969/j.issn.1673-6737.2002.02.001
Jiao J, Li T Y, Kazuo N . Research on rice production regionalization in Heilongjiang province. Heilongjiang Agric Sci, 2012, ( 11):1-4 (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-6737.2002.02.001
[27] Crickmore N, Zeigler N R, Feitelson J, Schneph E, Rie J V . Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998,62:807-813
[28] Shu C L, Zhang F J, Chen G H, Joseph L, Barqawi A, Evans J, Song F P, Li G X, Zhang J, Crickmore N . A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates domain I in specificity determination. J Invertebr Pathol, 2017,150:35-40
[29] 夏兰芹, 徐琼芳, 郭三堆 . 抗虫棉生长发育过程中Bt杀虫基因及其表达的变化. 作物学报, 2005,31:197-202
doi: 10.3321/j.issn:0496-3490.2005.02.011
Xia L Q, Xu Q F, Guo S D . Bt insecticidal gene and its temporal expression in transgenic cotton plants. Acta Agron Sin, 2005,31:197-202 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2005.02.011
[30] 王建武, 冯远娇, 骆世明 . Bt玉米抗虫蛋白表达的时空动态及其土壤降解研究. 中国农业科学, 2003,36:1279-1286
doi: 10.3321/j.issn:0578-1752.2003.11.008
Wang J W, Feng Y J, Luo S M . Studies on spatial-temporal dynamics of insecticidal protein expression of Bt corn and its degradation in soil. Sci Agric Sin, 2003,36:1279-1286
doi: 10.3321/j.issn:0578-1752.2003.11.008
[31] 杨丽丽, 董姗姗, 刘燕, 王长永, 袁艺 . mCry1Ac基因在抗虫转基因玉米Bt799中的表达特征. 生态与农村环境学报, 2014,30:670-673
doi: 10.3969/j.issn.1673-4831.2014.05.020
Yang L L, Dong S S, Liu Y, Wang C Y, Yuan Y . Expression of mCry1Ac gene in insect-resistant transgenic maize(Bt799). J Ecol Rural Environ, 2014,30:670-673 (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-4831.2014.05.020
[32] 刘洋, 柳青, 李楠, 刘相国, 张航, 赵方方, 贾伟, 韩四平, 尹悦佳 . 转cry1Ab/Gc基因玉米的不同转化事件Bt蛋白表达和抗虫性分析. 哈尔滨师范大学自然科学学报, 2016,32(3):87-92
Liu Y, Liu Q, Li N, Liu X G, Zhang H, Zhao F F, Jia W, Han S P, Yin Y J . Analysis of Bt protein expression and insect resistance in different transgenic cry1Ab/Gc maize. Nat Sci J Harbin Norm Univ, 2016,32(3):87-92 (in Chinese with English abstract)
[33] 于志晶, 蔡勤安, 林秀峰, 马瑞 . 转基因抗虫水稻中Bt蛋白表达量的研究. 安徽农业科学, 2012,40:3251-3252
doi: 10.3969/j.issn.0517-6611.2012.06.014
Yu Z J, Cai Q A, Lin X F, Ma R . Expression of Bt protein in transgenic insect-resistant rice. J Anhui Agric Sci, 2012,40:3251-3252 (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2012.06.014
[34] 汪秀峰, 叶芬, 李莉, 陆徐忠, 倪大虎, 王德正, 麦霄黎, 王淑云, 杨剑波 . 转基因水稻恢复系及其F1代Bt蛋白的时空表达分析. 分子植物育种, 2014,12:1077-1081
Wang X F, Ye F, Li L, Lu X Z, Ni D H, Wang D Z, Mai X L, Wang S Y, Yang J B . Temporal and spatial expression of Bt toxin in transgenic restorer line and its F1 hybrids. Mol Plant Breed, 2014,12:1077-1081 (in Chinese with English abstract)
[35] Jin Y M, Ma R, Yu Z J, Wang L, Jiang W Z, Lin X F . Development of Lepidopteran pest-resistant transgenic japonica rice harboring a synthetic cry2A* gene. J Integr Agric, 2015,14:423-429
doi: 10.1016/S2095-3119(14)60897-2
[36] 朱路青, 曹越平 . 转Bt基因大豆植株中Bt毒蛋白的表达. 上海交通大学学报(农业科学版), 2005,23:234-238
Zhu L Q, Cao Y P . Expression of insecticidal protein of Bacillus thuringiensis in Bt transgenic soybean. J Shanghai Jiaotong Univ(Agric Sci), 2005,23:234-238 (in Chinese with English abstract)
[37] Choi S B, Wang C, Muench D G, Ozawa K, Franceschi V R, Wu Y, Okita T W . Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature, 2000,407:765-767
doi: 10.1038/35037633 pmid: 11048726
[38] Ren Y L, Wang Y H, Liu F, Zhou K N, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W W, Han X H, Zhang X, Guo X P, Wu F Q, Cheng Z J, Wang J L, Lei C L, Lin Q B, Jiang L, Wu C Y, Bao Y Q, Wang H Y, Wan J M . Glutelin Precursor Accumulation3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell, 2014,26:410-425
doi: 10.1105/tpc.113.121376 pmid: 24488962
[39] 贾莉莉, 吴鹏昊, 李娟, 汪志兴, 陈全家, 王希东, 曲艳英 . Bt基因导入对海岛棉农艺性状和产量性状影响. 干旱地区农业研究, 2017,35(2):103-113
doi: 10.7606/j.issn.1000-7601.2017.02.17
Jia L L, Wu P H, Li J, Wang Z X, Chen Q J, Wang X D, Qu Y Y . Effects of introducing Bt gene on agronomic characters and yield characters of Gossipium barbadense L. Agric Res Arid Areas, 2017,35(2):103-113 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2017.02.17
[40] 张永芳, 陈茂, 叶恭银, 胡翠 . Bt水稻抗虫性及其农艺性状研究. 浙江农业学报, 2005,17:363-367
doi: 10.3969/j.issn.1004-1524.2005.06.006
Zhang Y F, Chen M, Ye G Y, Hu C . Studies on the insect- resistance and agronomic traits of transgenic rice with Bt gene. Acta Agric Zhejiangensis, 2005,17:363-367
doi: 10.3969/j.issn.1004-1524.2005.06.006
[41] Jiang Y, Huang S Q, Cai M L, Li C F, Kong X, Zhang F, Mohamed I, Cao C G . Yield changes of Bt-MH63 with cry1C* or cry2A* genes compared with MH63(Oryza sativa) under different nitrogen levels. Field Crops Res, 2013,151:101-106
[42] Yang J, Pan S G, Cai M L, Li C F, Zhan M, Wang J P, Mohamed I, Cao C G . Assessment of yield advantages ofBt-MH63 with cry1C* or cry2A* genes over MH63(Oryza sativa L.) under different pest control modes. Field Crops Res, 2014,115:153-158
[43] Kaur R, Sharma A, Gupta D, Kalita M, Bhatnagar R K . Bacillus thuringiensis toxin, Cry1C interacts with 128HLHFHLP134 region of aminopeptidase N of agricultural pest, Spodoptera litura. Process Biochem, 2014,49:688-696
doi: 10.1016/j.procbio.2014.01.008
[1] CHEN Yuan,GU Chao,WANG Gui-Xia,Lü Chun-Hua,LIU Xiao-Fei,ZHANG Xiang,CHEN De-Hua. Effect on Stresses of 18°C and Different Relative Humidities on Bt Protein Expression at Squaring Stage in Bt Cotton [J]. Acta Agron Sin, 2013, 39(01): 184-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!