Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 839-847.doi: 10.3724/SP.J.1006.2019.84157


Creation of high oleic acid soybean mutation plants by CRISPR/Cas9

Zhi-Hong HOU,Yan WU,Qun CHENG,Li-Dong DONG,Si-Jia LU,Hai-Yang NAN,Zhuo-Ran GAN,Bao-Hui LIU()   

  1. School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
  • Received:2018-11-21 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Bao-Hui LIU E-mail:Liubh@iga.ac.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China.(31771815, 31701445, 31801384)


Oleic acid content is one of the essential indicators to evaluate quality of oil in soybean. Three sites of 20 nt guide RNA (gRNA) targeted to the exon of GmFAD2-1A were designed and transcribed from the AtU3d, AtU3b, and AtU6-1 promoters, respectively. The three target sites of gRNA were ligated to the vector pYLCRISPR/Cas9-DB, and then the recombinant plasmid was transformed into a soybean cultivar Huaxia 3 by Agrobacterium-mediated transformation. The sequences near the editing site were analyzed by the PCR method and sequencing from T1 transgenic soybean plants, homozygous GmFAD2-1A mutants were obtained using CRISPR/Cas9 technology. The agronomic traits such as plant height, main stem number, branching number per plant, leaf shape, flower color, seed coat color, hilum color and growth period were no significant difference between the transgenic soybeans and non-transformed controls. However, the content of oleic acid in the transgenic soybean seed was significantly higher than that of the control cultivar Huaxia 3, indicating that GmFAD2-1A was a key gene during synthesis of oleic acid. We succeeded in editing the GmFAD2-1A by CRISPR/Cas9 technology in soybean and obtained homozygous mutant materials, which provides new germplasm resources and method for the breeding of high oleic acid.

Key words: soybean, fatty acid, oleic acid, GmFAD2-1A, CRISPR/Cas9

Fig. 1

Maps of pYLgRNA and pYLCRISPR/Cas9-DB vectors"

Fig. 2

Positions of three targets in the GmFAD2-1A gene locus The white boxes on the left and the right represent 5' and 3' noncoding regions; the black box stands for CDS; the solid line represents the intron."

Table 1

Primer sequence"

Primer name
Oligonucleotide sequence (5'-3')

Fig. 3

Schematic diagram of the pYLCRISPR/Cas9-FAD2-1A-gRNA vector construction"

Table 2

Mediums and compositions in soybean transformation"

Shoot induction medium
Shoot elongation medium
MS合成盐 MS salt mixture
B5合成盐 B5 salt mixture 1/10×
2-(4-吗啉)乙磺酸 MES (g L-1) 4.2 0.6 0.6
6-苄基腺嘌呤 6-BAP (mg L-1) 3.2 1.6
赤霉素 GA3 (mg L-1) 0.5
羧苄青霉素Car (mg L-1) 50 50
二硫苏糖醇 DTT (mg L-1) 150
替卡西林 Tic (mg L-1) 100 100 25
头孢霉素 Cef (mg L-1) 75 75 25
L-天冬酰胺 L-Asp (mg L-1) 50
谷氨酰胺 Glu (mg L-1) 50
草铵膦 Glufosinate (mg L-1) 250
Shoot induction
Shoot elongation medium
吲哚乙酸 IAA (mg L-1) 0.1
玉米素 ZR (mg L-1) 1
吲哚丁酸 IBA (mg L-1) 1
蔗糖 Sucrose (g L-1) 20 30 30 30 20
琼脂 Agar (g L-1) 12 6.5 8.5 9 12
pH 5.8 5.4 5.7 5.6 5.8

Fig. 4

Identification of recombinant plasmids A: Electrophoresis of PCR detection of clony; M: DNA marker (DM2000); 1: H2O blank control; 2: pYLCRISPR/Cas9-DB plasmid; 3-7: FAD2-1A gene knockout positive single clones. B: Identification of the pYLCRISPR/Cas9-FAD2-1A-gRNA plasmid digested with Asc I; M: 1 kb DNA ladder marker; 1: pYLCRISPR/Cas9- FAD2-1A-gRNA."

Fig. 5

Conversion process and the results of leaf painting A: transformation soybean cotyledonine by agrobacterium; 1: germination of sterile seedlings; 2: co-cultivation; 3: shoot induction; 4: shoot elongation; 5: rooting of the resistant shoot; 6: seedling acclimatization. B: identification of the herbicide resistance of the leaves of T0 transgenic soybean plants using glufosinate; a: positive transgenic plant; b: negative transgenic plant."

Fig. 6

Identification of GmFAD2-1A mutant A: PCR detection of T1 transgenic soybean; M: DNA marker (DM2000); 1: H2O blank control; 2: WT H3; 3-7: positive seedling of glufosinate tolerence of transgenic soybean. B: sequence alignment of GmFAD2-1A mutant compared to the WT line; C: sequence alignment of GmFAD2-1A mutant and wild-type protein."

Table 3

Agronomic traits of the transgenic soybean"

Agronomic trait
Huaxia 3
GmFAD2-1A mutant
株高 Plant height (cm) 58.53±1.47 57.60±0.54
主茎节数 Main stem number 11±0 11±0
单株分枝数 Branching number per plant 4±0 4±0
叶形 Leaf shape 椭圆形 Oval 椭圆形 Oval
花色 Flower color 白色 White 白色 White
种皮色 Seed coat color 黄色 Yellow 黄色 Yellow
种脐色 Hilum color 浅褐色 Pale brown 浅褐色 Pale brown
生育期 Growth period (d) 107±0 107±0
蛋白 Protein (%) 40.47±0.54 40.61±0.12
油脂 Oil (%) 20.06±0.12 20.5±0.16

Fig. 7

GmFAD2-1A mutants phenotype and the fatty acids content OA: oleic acid; LA: linoleic acid; ALA: linolenic acid; PA: palmitic acid; SA: stearic acid."

[1] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in plants. Metaba Eng, 2002,4:12-21.
doi: 10.1006/mben.2001.0204 pmid: 11800570
[2] 任波, 李毅 . 大豆种子脂肪酸合成代谢的研究进展. 分子植物育种, 2005,3:301-306.
Ren B, Li Y . Research advances on fatty acid biogynthesis metabolism in soybean seed. Mol Plant Breed, 2005,3:301-306 (in Chinese with English abstract).
[3] Clemente T E, Cahoon E . Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 2009,151:1030-1040.
[4] 邹筱, 韩粉霞, 陈明阳, 孙君明, 南金平, 闫淑荣, 杨华 . 大豆脂肪酸主要组分含量QTL定位. 作物学报, 2014,40:1595-1603.
Zou X, Han F X, Chen M Y, Sun J M, Nan J P, Yan S R, Yang H . Quantitative trait loci associated with major fatty acid components in soybean. Acta Agron Sin, 2014,40:1595-1603 (in Chinese with English abstract).
[5] 宋晓昆, 张颖君, 闫龙, 杨春燕, 郑艳艳, 蒋春志, 荆慧贤, 张孟臣, 黄占景 . 大豆脂肪酸组份相关、变异特点分析. 华北农学报, 2010,25(增刊):68-73.
Song X K, Zhang Y J, Yan L, Yang C Y, Zheng Y Y, Jiang C Z, Jing H X, Zhang M C, Huang Z J . A Study on correlation and variability of fatty acid composition contents of soybean cultivars. Acta Agric Boreali-Sin, 2010,25(suppl):68-73 (in Chinese with English abstract).
[6] Sleper D A, Shannon J G . Role of public and private soybean breeding programs in the development of soybean varieties using biotechnology. AgBioForum, 2003,6:27-32.
[7] Sleight P . Cholesterol and coronary heart disease mortality. Aust N Z J Med, 1992,22:576-579.
doi: 10.1111/j.1445-5994.1992.tb00480.x pmid: 1449442
[8] Smith G D, Song F, Sheldon T A . Cholesterol lowering and mortality: the importance of considering initial level of risk. BMJ, 1993,306:1367-1373.
doi: 10.1136/bmj.306.6893.1648 pmid: 8518602
[9] Ohlrogge J B, Kuhn D N, Stumpf P K . Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci USA, 1979,76:1194-1198.
doi: 10.1073/pnas.76.3.1194 pmid: 286305
[10] Liu Q, Brubaker C L, Green A G, Marshall D R, Sharp P J, Singh S P . Evolution of the FAD2-1 fatty acid desaturase 5' UTR intron and the molecular systematics of Gossypium(Malvaceae). Am J Bot, 2001,88:92-102.
doi: 10.2307/2657130 pmid: 11159130
[11] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J . Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994,6:147-158.
doi: 10.1105/tpc.6.1.147 pmid: 7907506
[12] Zhang D, Irma L P, Stacy J P, Mongkol N, Purnima N, Sylvia W W, Robert M P, Kent D C . Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009,47:462-471.
doi: 10.1016/j.plaphy.2008.12.024 pmid: 19217793
[13] Hongtrakul V, Slabaugh M, Knapp S J . A seed specific Δ 12 oleate desaturase is duplicated, rearranged, and weakly expressed in high oleic acid sunflower lines . Crop Sci, 1998,38:1245-1249.
doi: 10.2135/cropsci1998.0011183X003800050022x
[14] Li L Y, Wang X L, Gai J Y, Yu D . Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol, 2007,64:1516-1526.
doi: 10.1016/j.jplph.2006.08.007 pmid: 17141918
[15] Heppard E P, Kinney A J, Stecca K L, Miao G H . Developmental and growth temperature regulation of two different microsomalω- 6saturase genes in soybeans. Plant Physiol, 1996,110:311-319.
doi: 10.1104/pp.110.1.311 pmid: 8587990
[16] Li L Y, Wang X L, Gai J Y, Yu D Y . Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. DNA Seq, 2008,19:28-36.
doi: 10.1080/10425170701207208 pmid: 18300159
[17] Pham A T, Lee J D, Shannon J G, Bilyeu K D . Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol, 2010,10:195, doi: 10.1186/1471-2229-10-195.
doi: 10.1186/1471-2229-10-195 pmid: 20828382
[18] Pham A T, Lee J D, Shannon J G, Bilyeu K D . A novel FAD2-1A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet, 2011,123:793-802.
[19] Wang G L, Xu Y N . Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep, 2008,27:1177-1184.
doi: 10.1007/s00299-008-0535-8 pmid: 18347801
[20] Zhang L, Yang X D, Zhang Y Y, Yang J, Qi G X, Guo D Q, Xing G J, Yao Y, Xu W J, Li H Y, Li Q Y, Dong Y S . Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genomics, 2014,2014:921-950.
doi: 10.1155/2014/921950 pmid: 4147191
[21] 杨静, 邢国杰, 牛陆, 贺红利, 杜茜, 郭东全, 袁英, 杨向东 . 反义RNA介导GmFAD2-1B基因沉默增强大豆种子中油酸的高效积累. 作物学报, 2017,43:1588-1595.
Yang J, Xing G J, Niu L, He H L, Du Q, Guo D Q, Yuan Y, Yang X D . Antisense RNA-mediated GmFAD2-1B gene silencing enhances accumulation of oleic acid in transgenic soybean seeds. Acta Agron Sin, 2017,43:1588-1595 (in Chinese with English abstract).
[22] Haun W, Coffman A, Clasen B M, Demorest Z L, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas D F, Zhang F . Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J, 2014,12:934-940.
doi: 10.1111/pbi.12201 pmid: 24851712
[23] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E , A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
[24] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[25] Liang Z, Zhang K, Chen K L, Gao C X . Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014,41:63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[26] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32:947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[27] Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Liu J X ,Jeff Xi J Z,Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR/Cas system. Nat Biotechnol, 2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[28] 王加峰, 郑才敏, 刘维, 罗文龙, 王慧, 陈志强, 郭涛 . 基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建. 作物学报, 2016,42:1160-1167.
Wang J F, Zheng C M, Liu W, Luo W L, Wang H, Chen Z Q, Guo T . Construction of tgw6 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2016,42:1160-1167 (in Chinese with English abstract).
[29] Jacobs T B ,LaFayette P R,Schmitz R J,Parrott W A . Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015,15:16, doi: 10.1186/s12896-015-0131-2.
doi: 10.1186/s12896-015-0131-2 pmid: 4365529
[30] Cai Y P, Chen L, Liu X J, Chen G, Sun S, Wu C X, Jiang B J, Han T F, Hou W S . CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018,16:176-185.
doi: 10.1111/pbi.12758 pmid: 28509421
[31] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G . A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[32] Olhoft P M, Donovan C M, Somers D A . Soybean (Glycine max) transformation using mature cotyledonary node explants. Methods Mol Biol, 2006,343:385-396.
doi: 10.1385/1-59745-130-4:385 pmid: 16988361
[33] Poirier Y, Ventre G, Caldelari D . Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium- chain-length fatty acids. Plant Physiol, 1999,121:1359-1366.
[34] Chang N W, Huang P C . Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids, 1998,33:481-487.
doi: 10.1007/s11745-998-0231-9 pmid: 9625595
[35] Williams M J, Sutherland W H, Mccormick M P, De Jong S A, Walker R J, Wilkins G T . Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol, 1999,33:1050-1055.
doi: 10.1016/S0735-1097(98)00681-0 pmid: 10091835
[36] Billek G . Health aspects of thermoxidized oils and fats. Eur J Lipid Sci Technol, 2000,102:587-593.
doi: 10.1002/1438-9312(200009)102:8/9<587::aid-ejlt587>3.0.co;2-#
[37] Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K . Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006,25:206-213.
[38] Cheng T Y, Saka T ,Voqui-Dinh T H. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci Lett, 1980,19:91-99.
doi: 10.1016/0304-4211(80)90084-X
[39] Olhoft P M, Flagel L E, Donovan C M, Somers D A . Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 2003,216:723-735.
doi: 10.1007/s00425-002-0922-2 pmid: 12624759
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
Full text



No Suggested Reading articles found!