Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1465-1473.doi: 10.3724/SP.J.1006.2020.01022

• REVIEW •     Next Articles

Genome dominance and the breeding significance in Triticeae

LIU Deng-Cai*(), ZHANG Lian-Quan, HAO Ming, HUANG Lin, NING Shun-Zong, YUAN Zhong-Wei, JIANG Bo, YAN Ze-Hong, WU Bi-Hua, ZHENG You-Liang   

  1. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2020-03-18 Accepted:2020-07-02 Online:2020-10-12 Published:2020-07-06
  • Contact: Deng-Cai LIU E-mail:dcliu7@sicau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(91935303);National Natural Science Foundation of China(31671689);National Natural Science Foundation of China(31671682);Sichuan Province Science & Technology Department Crops Breeding Project, and the Sichuan Province Agriculture and Affairs Department Innovative Research Team


Triticeae tribe houses a number of allopolyploid species that harbor combinations of various genomes. The different genomes of an allopolyploid may have asymmetric contributions to morphological traits. For instance, the taxon traits of allopolyploids within genus Triticum is highly like those from the donor species of A-genome, termed this phenomenon as A-genome dominance. Because of genome dominance, the allopolyploids of Triticeae are grouped into different species clusters with A, D, U, or St as the pivotal (dominant) genome. Genome dominance may confer the advantages in evolution and adaptation. In breeding, it is an important factor to influence the development of novel allopolyploid crops and the design of wheat-alien chromosome translocations.

Key words: allopolyploid, genome asymmetry, pivotal genome

Fig. 1

Triticum turgidum, Aegilops tauschii, and common wheat The plant and spike morphologies of common wheat are like those from T. turgidum, distinct from Ae. tauschii."

Fig. 2

Allopolyploid species clusters with A, D, U, or St as the pivotal genome"

Fig. 3

Spikes of nascent allopolyplods and the parent species a: Nascent hexaploids (AABBUU, AABBMM, AABBCC) and T. trugidum (AABB), Ae. umbellulata (UU), Ae. comosa (MM), Ae. caudata (CC). b: Nascent hexaploids (AABBAuAu, AABBAmAm, AAGGDD), octaploids (AABBDDAmAm, AABBDDDD) and T. urartu (AuAu), T. monococcum (AmAm), Ae. tauschii (DD), T. trugidum (AABB), and T. timopheevii (AAGG)."

[1] Lanker M, Bell M, Picasso V D. Farmer perspectives and experiences introducing the novel perennial grain Kernza intermediate wheatgrass in the US Midwest. Renew Agric Food Syst, 2019, 1-10.
[2] Kihara H. Genome analyse of Triticum and Aegilops. Cytologia, 1930,1:263-284.
[3] Dewey D R. The genomic system of classification as a guide to intergeberic hybridization with the perennial Triticeae. In: Gustafson J P, ed. Gene Manipulation in Plant Improvement. New York, USA: Plenum Publishing, 1984. pp 209-279.
[4] Löve Á. Conspectus of the Triticeae. Feddes Rep, 1984,95:425-521.
[5] Yen C, Yang J L. Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). Breed Sci, 2009,59:513-518.
doi: 10.1270/jsbbs.59.513
[6] Dvořák J, Terlizzi P D, Zhang H B, Resta P. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 1993,36:21-31.
doi: 10.1139/g93-004 pmid: 18469969
[7] Kihara H. Discovery of the DD analyser, one of the tetraploid. Agric Hortic, 1944,19:889-890.
[8] Petersen G, Seberg O, Yde M, Berthelsenb K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol, 2006,39:70-82.
doi: 10.1016/j.ympev.2006.01.023 pmid: 16504543
[9] Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 2007,24:217-227.
doi: 10.1093/molbev/msl151 pmid: 17053048
[10] McFadden E S, Sears E R. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 1944,13:26-27.
[11] Ogbonnaya F C, Halloran G M, Lagudah E S. D genome of wheat-60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service. Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005. pp 205-220.
[12] Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci USA, 2002,99:8133-8138.
doi: 10.1073/pnas.072223799 pmid: 12060759
[13] Feldman M, Levy A A, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot, 2012,63:5045-5059.
doi: 10.1093/jxb/ers192
[14] Eckardt N A. Genome dominance and interaction at the gene expression level in allohexaploid wheat. Plant Cell, 2014,26:1834.
doi: 10.1105/tpc.114.127183 pmid: 24838977
[15] 颜济, 杨俊良. 小麦族生物系统学. 中国农业出版社, 1998. pp 1-271.
Yen C, Yang J L. Biosystematics of Triticeae. China Agriculture Press, 1998. pp 1-271(in Chinese).
[16] Kihara H. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia, 1954,19:336-357.
doi: 10.1508/cytologia.19.336
[17] Zohary D, Feldman M. Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution, 1962,16:44-61.
doi: 10.1111/evo.1962.16.issue-1
[18] Kimber G, Yen Y. Analysis of pivotal-differential evolutionary patterns. Proc Natl Acad Sci USA, 1988,85:9106-9108.
doi: 10.1073/pnas.85.23.9106 pmid: 16594002
[19] Feldman M. Chromosome pairing between differential genomes in hybrids of tetraploid Aegilops species. Evolution, 1965,19:563-568.
doi: 10.1111/evo.1965.19.issue-4
[20] Resta P, Zhang H B, Dubcovsky J, Dvořák J. The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am J Bot, 1996,83:1556-1565.
doi: 10.1002/j.1537-2197.1996.tb12813.x
[21] Senerchia N, Felber F, Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol, 2014,202:975-985.
doi: 10.1111/nph.12731
[22] Akhunov E D, Sehgal S, Liang H Q, Wang S C, Akhunova A R, Kaur G, Li W L, Forrest K L, See D, Šimková H, Ma Y Q, Hayden M J, Luo M C, Faris J D, Doležel J, Gill B S. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploidy wheat. Plant Physiol, 2013,161:252-265.
doi: 10.1104/pp.112.205161
[23] Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi U M, Alaux M, Doležel J, Fahima T, Budak H, Keller B, Salvi S, Maccaferri M, Steinbach D, Feuillet C, Quesneville H, Salse J. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J, 2013,76:1030-1044.
doi: 10.1111/tpj.12366
[24] Leitch I, Bennett M. Genome downsizing in polyploidy plants. Biol J Linnean Soc, 2004,82:651-663.
doi: 10.1111/j.1095-8312.2004.00349.x
[25] Baack E J, Whitney K D, Rieseberg L H. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol, 2005,167:623-630.
doi: 10.1111/j.1469-8137.2005.01433.x pmid: 15998412
[26] Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell, 2014,26:4311-4327.
doi: 10.1105/tpc.114.129841
[27] Pont C, Salse J. Wheat paleohistory created asymmetrical genomic evolution. Curr Opin Plant Biol, 2017,36:29-37.
doi: 10.1016/j.pbi.2017.01.001 pmid: 28182971
[28] Song Z P, Dai S F, Jia Y N, Zhao L, Kang L Z, Liu D C, Wei Y M, Zheng Y L, Yan Z H. Development and characterization of Triticum turgidum-Aegilops umbellulata amphidiploids. Plant Genet Resour, 2019,17:24-32.
doi: 10.1017/S1479262118000254
[29] Yen C, Yang J, Yen Y. Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxon Sin, 2005,43:82-93.
doi: 10.1360/aps040073
[30] 颜济, 杨俊良, Baum B R. 小麦族生物系统学. 北京: 中国农业出版社, 2006. pp 1-309.
Yan J, Yang J L, Baum B R. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2006. pp 1-309(in Chinese).
[31] 颜济, 杨俊良. 小麦族生物系统学. 北京: 中国农业出版社, 2011. pp 1-620.
Yan J, Yang J L. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2011. pp 1-620(in Chinese).
[32] 颜济, 杨俊良. 小麦族生物系统学. 北京: 中国农业出版社, 2013. pp 1-630.
Yan J, Yang J L. Biosystematics of Triticeae. Beijing: China Agriculture Press, 2013. pp 1-630(in Chinese).
[33] Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007,316:1862-1866.
doi: 10.1126/science.1143986 pmid: 17600208
[34] Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012,192:763-774.
doi: 10.1534/genetics.112.146316
[35] Larter E N. Triticale Agriculture. In: The Canadian Encyclopedia. Canadian: Anthony Wilson-Smith. Article published March 06, 2012. Last Edited March 23, 2015. https://www.thecanadianencyclopedia.ca/en/article/triticale.
[36] Bassu S, Asseng S, Richards R. Yield benefits of triticale traits for wheat under current and future climates. Field Crops Res, 2011,124:14-24.
doi: 10.1016/j.fcr.2011.05.020
[37] Estrada Campuzano G, Slafer G A, Mirallesa D J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res, 2012,128:167-179.
doi: 10.1016/j.fcr.2012.01.003
[38] Davis Knight H R, Weightman R M. The potential of triticale as a low input cereal for bioethanol production. In: Home Grown Cereals Authority Project Report (No. 434). London: Home-Grown Cereals Authority, 2008. p 40.
[39] Bilgili U, Cifci E A, Hanoglu H, Yagdi K, Acikgoz E. Yield and quality of triticale forage. J Food Agric Environ, 2009,7:556-560.
[40] Gowda M, Hahn V, Reif J C, Longin C F H, Alheit K, Maurer H P. Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crops Res, 2011,121:153-157.
doi: 10.1016/j.fcr.2010.12.003
[41] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D, Zhang A. Distribution in genome of quantitative trait loci (QTL) for yield and yield-related traits in common wheat (Triticum aestivum L.). J Integr Plant Biol, 2010,52:996-1007.
doi: 10.1111/j.1744-7909.2010.00967.x
[42] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, doi: org/10.1007/s00122-020-03562-8.
doi: 10.1007/s00122-020-03659-0 pmid: 32803378
[43] Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford M J, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019,132:2285-2294.
doi: 10.1007/s00122-019-03354-9 pmid: 31049633
[44] Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri L C, Ogbonnaya F C. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed, 2016,36:127.
doi: 10.1007/s11032-016-0541-4
[45] Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell, 2014,26:1878-1900.
doi: 10.1105/tpc.114.124388
[46] Li A, Geng S F, Zhang L Q, Liu D C, Mao L. Making the bread: insights from newly synthesized allohexaploid wheat. Mol Plant, 2015,8:847-859.
doi: 10.1016/j.molp.2015.02.016 pmid: 25747845
[47] Steige K A, Slotte T. Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Curr Opin Plant Biol, 2016,30:88-93.
doi: 10.1016/j.pbi.2016.02.006 pmid: 26943938
[48] Wendel J F, Lisch D, Hu G, Mason A S. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev, 2018,49:1-7.
doi: 10.1016/j.gde.2018.01.004 pmid: 29438956
[49] Bird K A, VanBuren R, Puzey J R, Edger P P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol, 2018,220:87-93.
doi: 10.1111/nph.15256 pmid: 29882360
[50] Bottani S, Zabet N R, Wendel J F, Veitia R A. Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci, 2018,23:393-402.
doi: 10.1016/j.tplants.2018.01.002 pmid: 29433919
[51] Mirzaghaderi G, Mason A S. Revisiting pivotal-differential genome evolution in wheat. Trends Plant Sci, 2017,22:674-684.
doi: 10.1016/j.tplants.2017.06.003 pmid: 28648886
[52] Boyle E A, Li Y I, Pritchard J K. An expanded view of complex traits: from polygenic to omnigenic. Cell, 2017,169:1177-1186.
doi: 10.1016/j.cell.2017.05.038 pmid: 28622505
[53] Sears E R. The systematics, cytology and genetics of wheat. Handb. Pflanzenzücht, 1956,2:164-187.
[54] Zuo Y, Xiang Q, Dai S, Song Z, Bao T, Hao M, Zhang L, Liu G, Li J, Liu D, Wei Y, Zheng Y, Yan Z. Development and characterization of Triticum turgidum-Aegilops comosa and T. turgidum-Ae. markgrafii amphidiploids. Genome, 2020, doi: 10.1139/gen-2019-0215.
doi: 10.1139/gen-2019-0199 pmid: 32552081
[55] Li H Y, Liu X J, Zhang M H, Feng Z, Liu D C, Ayliffe M, Hao M, Ning S Z, Yuan Z W, Yan Z H, Chen X J, Zhang L Q. Development and identification of new synthetic T. turgidum-T. monococcum amphiploids. Plant Genet Resour, 2018,16:555-563.
doi: 10.1017/S1479262118000175
[56] Liu X J, Zhang M H, Liu X, Li H Y, Hao M, Ning S Z, Yuan Z W, Liu D C, Wu B H, Chen X J, Chen W J, Zhang L Q. Molecular cytogenetic identification of newly synthetic Triticum kiharae with high resistance to stripe rust. Genet Resour Crop Evol, 2018,65:1725-1732.
doi: 10.1007/s10722-018-0649-y
[57] Zeng D, Guan J, Luo J, Zhao L, Li Y, Chen W, Zhang L, Ning S, Yuan Z, Li A, Zheng Y, Mao L, Liu D, Hao M. A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant Biol, 2020,20:97.
doi: 10.1186/s12870-020-2309-6 pmid: 32131739
[58] Mujeeb Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L.s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996,43:129-134.
doi: 10.1007/BF00126756
[59] Yang W, Liu D, Li j, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009,36:539-546.
doi: 10.1016/S1673-8527(08)60145-9
[60] Sears E R. Chromosome engineering in wheat. In: 4th Stadler Genetics Symposium, University of Missouri, Columbia, 1972. pp 23-38.
[61] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat- Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995,91:1125-1128
doi: 10.1007/BF00223930 pmid: 24170007
[62] Li L H, Dong Y S, Zhou R H, Li X Q, Li P. Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Chin J Genet, 1995,22:105-112.
[63] Li Z, Li B, Tong Y P. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics, 2009,35:451-456.
doi: 10.1016/S1673-8527(08)60062-4 pmid: 18721781
[64] Han H, Liu W, Zhang J, Zhou S, Yang X, Li X, Li L. Identification of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum derivative lines by FISH. Sci Rep, 2019,9:9712.
doi: 10.1038/s41598-019-46197-6 pmid: 31273296
[65] Martis M M, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler K G, Scholz U, Hackauf B, Korzun V, Schön C C, Doležel J, Bauer E, Mayer K F X, Stein N. Reticulate evolution of the rye genome. Plant Cell, 2013,25:3685-3698.
doi: 10.1105/tpc.113.114553
[66] Zeller F J. 1B/1R wheat-rye chromosome substitutions and translocations. In: Proceedings of the 4th International Wheat Genetics Symposium. Columbia, MO: Agricultural Experiment Station, 1973. pp 209-221.
[67] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J L, Chen Y P, Liu D J, Wang X E, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011,108:7727-7732.
doi: 10.1073/pnas.1016981108 pmid: 21508323
[68] Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y. The draft genome of Triticum urartu. Nature, 2013,496:87-90.
doi: 10.1038/nature11997
[69] Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013,496:91-95.
doi: 10.1038/nature12028
[70] IWGSC. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014,345:1251788.
doi: 10.1126/science.1251788 pmid: 25035500
[71] Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, Anderson O D, Ouyang S, Liang Y, Zimin A V, Pertea G, Qi P, Bennetzen J L, Dai X, Dawson M W, Müller H G, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer K F X, Lu F H, Bevan M W, Leroy P, Li P, You F M, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg S L, Devos K M, Dvořák J. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017,551:7681.
[72] Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977,19:585-593.
doi: 10.1139/g77-063
[73] Lukaszewski A J, Cowger C. Re-engineering of the Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination. Crop Sci, 2017,57:2590-2594.
doi: 10.2135/cropsci2017.03.0192
[74] Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci, 2020,11:252.
doi: 10.3389/fpls.2020.00252 pmid: 32211007
[75] Kole C. Wild Crop Relatives: Genomic and Breeding Resources. Cereals. Berlin, Heidelberg: Springer-Verlag, 2011.
[76] Kishii M. An update of recent use of Aegilops species in wheat breeding. Front Plant Sci, 2019,10:585.
doi: 10.3389/fpls.2019.00585 pmid: 31143197
[77] Sears E R. Genetic control of chromosome pairing in wheat. Annu Rev Genet, 1976,10:31-51.
doi: 10.1146/annurev.ge.10.120176.000335 pmid: 797311
[78] Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994,73:199-212.
doi: 10.1007/BF00036700
[79] Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 2007,15:3-19.
doi: 10.1007/s10577-006-1108-8
[1] HE Liang-Qiong,XIONG Fa-Qian,TANG Xiu-Mei,JIANG Jing,HAN Zhu-Qiang,ZHONG Rui-Chun,GAO Zhong-Kui,Li Zhong,HE Xin-Hua,TANG Rong-Hua. Analysis of Gene Expression Variation by cDNA-SCoT Technique at the Early Period of Arachis Artificial Allopolypoidy Evolution [J]. Acta Agron Sin, 2014, 40(10): 1767-1775.
[2] WANG Bian-Yin, ZHAI Jun, HAO Yuan-Feng, LI An-Fei, KONG Lian-Rang. Microsatellite Variation in Synthetic Hexaploid Wheat [J]. Acta Agron Sin, 2011, 37(08): 1491-1496.
[3] Cai Detian;Yuan Longping;Lu Xinggui. A New Strategy of Rice Breeding in the 21st Century Ⅱ.Searching a New Pathway of Rice Breeding by Utilization of Double Heterosis of Wide Cross and Polyploidization [J]. Acta Agron Sin, 2001, 27(01): 110-116.
Full text



No Suggested Reading articles found!