Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 194-203.doi: 10.3724/SP.J.1006.2020.94065

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Microspore culture and observations on meiotic chromosome pairing of the haploid in Orychophragmus violaceus

YIN Jia-Ming1,2,ZHONG Rong-Qi1,2,LIN Na1,2,TANG Zhang-Lin1,2,LI Jia-Na1,2   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2 Chongqing Rapeseed Eengineering and Technology Research Center, Chongqing 400715, China
  • Received:2019-04-24 Accepted:2019-08-09 Online:2020-02-12 Published:2019-10-12
  • Supported by:
    This study was supported by the National Key Research and Development Plan(2018YFD0100503);the China Agriculture Research System(CARS-12);the Chongqing Science and Technology Innovation Special Project for Social Affairs and People’s Livelihood Insurance(cstc2016shms-ztzx80010);the Chongqing Science and Technology Innovation Special Project for Social Affairs and People’s Livelihood Insurance(cstc2017shms-xdny80009)

Abstract:

Orychophragmus violaceus is extremely valuable as the ornamental, vegetable, forage and oil germplasm resource. In order to develop the technique of microspore-derived embryoid induction and plant regeneration, and provide dada for the origin and evolution of the genome, the effects of the heat-shock incubation duration and the content of additional activated charcoal on embryoid yield were studied through microspore culture, and the meiotic chromosome pairing behavior of the haploid was observed by conventional squashing method in O. violaceus. The activated charcoal addition and heat shock culture were required for embryoid induction. When 4 mL microspore suspension with 1 bud per mL was incubated in a Φ6 cm petri dish at 32℃ of heat shock for three days and supplemented with 1 mg activated charcoal in each dish, the cotyledon-shaped embryoid yield and total embryoid yield were highest, which were 0.92 ± 0.18 and 1.32 ± 0.25 embryoids per bud, respectively. The germination rate of the cotyledon-shaped embryoids in 1/2MS medium was 27.73%. The natural chromosome doubling rate was 25% among the survival microspore-derived plantlets. The chromosome number of the double haploid plants and the haploid plants was 24 and 12, respectively. The meiotic chromosome pairing configuration of the haploid in O. violaceus was averaged as n = 12 = 6.352I + 2.008II + 0.384III + 0.12IV. The percentage of the pollen mother cells with bivalent, trivalent and tetravalent was up to 96%. The 12 chromosomes in 0.8% of pollen mother cells synapsed into three tetravalents. The chromosome pairing behavior strongly suggested that O. violaceus originated from a homologous octoploid with the basic chromosome number of x = 3. The above results provide a reference for breeding new materials and cultivars and for basic research in O. violaceus.

Key words: Orychophragmus violaceus, microspore culture, embryoid, haploid, meiosis, chromosome pairing

Fig. 1

Microspore embryogenesis of Orychophragmus violaceus A: some swelled microspores; B: microsporal equal cell division; C: microsporal unequal cell division; D: multicell cluster; E: proembryo with a suspensor-like structure; F: globular proembryo; G: globular embryo; H: round sphere embryoid with a suspensor-like structure; I: oval sphere embryoid; J: heart embryoid; K: cordate embryoid; L: embryoids after 28 days of culture."

Fig. 2

Morphology of the microspore-derived embryoids of O. violaceus A: dicotyledonous embryoid; B: tricotyledonous embryoid; C: tricotyledonous embryoid with an additional radicle; D: monocotyledonous embryoid; E: twin dicotyledonous embryoids; F: torpedo-shaped embryoids; G: heart-shaped embryoids; H: globular embryoids; I: anomalous embryoids; Bar = 2 mm."

Table 1

Microspore-derived embryoids yield of O. violaceus under different heat-shock duration"

热激时间
Heat-shock duration (d)
子叶形胚状体
Cotyledonous embryoids (No. per bud)
总胚状体
All embryoids (No. per bud)
0 0 0
1 0.13±0.13 c 0.57±0.13 c
3 0.92±0.18 a 1.32±0.25 a
5 0.48±0.10 b 0.95±0.09 b
7 0.15±0.09 c 0.60±0.13 c

Table 2

Microspore-derived embryoids yield of O. violaceus under different active charcoal contents"

活性炭浓度
Active charcoal content (mg dish-1)
子叶形胚状体
Cotyledonous embryoids (No. per bud)
总胚状体
All embryoids (No. per bud)
0 0 0
1 0.92±0.18 a 1.32±0.25 a
2 0.85±0.15 a 1.25±0.10 ab
3 0.37±0.10 b 0.80±0.17 b

Fig. 3

Regeneration, morphology, fertility, and ploidy of the microspore-derived plantlets in O. violaceus A: germination of embryoids; B: doubled microspore-derived plantlet; C: haploid plantlet; D: flowers and buds of double haploid and haploid plantlets; E: pollens of double haploid plantlet; F: pollens of haploid plantlet; G: chromosomes in the pollen mother cell of doubled plantlet (2n = 24); H: chromosomes in the pollen mother cell of haploid plantlet(2n = 12); bar = 10 μm."

Table 3

Meiotic chromosome pairing in haploid of O. violaceus"

序号
No.
染色体构型 Chromosome configuration 细胞数
No. of cells
百分比
Percentage (%)
IV III II I
1 0 0 0 12 5 4.0
2 0 0 1 10 16 12.8
3 0 0 2 8 21 16.8
4 0 0 3 6 22 17.6
5 0 0 4 4 6 4.8
6 0 0 5 2 3 2.4
7 0 0 6 0 3 2.4
8 0 1 0 9 3 2.4
9 0 1 1 7 9 7.2
10 0 1 2 5 15 12.0
11 0 1 3 3 2 1.6
12 0 2 0 6 2 1.6
13 0 2 1 4 3 2.4
14 0 2 2 2 2 1.6
15 0 2 3 0 1 0.8
16 1 0 0 8 1 0.8
17 1 0 1 6 3 2.4
18 1 0 2 4 2 1.6
19 1 0 3 2 1 0.8
20 1 0 4 0 1 0.8
21 1 1 0 5 1 0.8
22 1 1 1 3 1 0.8
23 2 1 0 1 1 0.8
24 3 0 0 0 1 0.8
合计Total 15 48 251 794 125 100.0
平均Average 0.12 0.384 2.008 6.352

Fig. 4

Some meiotic chromosome (2n = 12) pairing configurations in pollen mother cells of the haploid of O. violaceus (Bar = 10 μm) A: 12I; B: 1II+10I; C: 6II; D: 1III+3II+3I; E: 1IV+4II; F: 1IV+1III+1II+3I; G: 2IV+1III+1I; H: 3IV."

[1] 周太炎, 关克俭, 郭荣鳞 . 中国植物志(第33卷). 北京: 科学出版社, 1987. pp 40-43.
Zhou T Y, Guan K J, Guo R L. Flora of China (Vol 33). Beijing: Science Press, 1987. pp 40-43(in Chinese).
[2] 殷家明, 罗鹏, 蓝泽蘧, 黄邦全 . 芥蓝×诸葛菜属间杂种的获得. 园艺学报, 1998,25:297-299.
Yin J M, Luo P, Lan Z Q, Huang B Q . Production of intergeneric hybrids from Brassica alboglabra × Orychophragmus violaceus. Acta Hortic Sin, 1998,25:297-299 (in Chinese with English abstract).
[3] Fu W Q, Chen D Z, Pan Q, Li F F, Zhao Z G, Ge X H, Li Z Y . Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Plant Biotechnol J, 2018,16:367-380.
doi: 10.1111/pbi.12777 pmid: 28640973
[4] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1-13.
doi: 10.3389/fpls.2017.00001 pmid: 28220127
[5] Luo P, Huang B Q . A study on exploitation of new vegetable germplasm Orychophragmus violaceus O. E. Schulz, a member of Brassicaceae. Acta Hortic, 1996,407:75-79.
[6] Luo P, Huang B Q, Yin J M, Chen Z L, Chen Y H, Lan Z Q . A new forage genetic resource Orychophragmus violaceus(L.) O. E. Schulz. Genet Resour Crop Evol, 1998,45:491-494.
doi: 10.1023/A:1008668225306
[7] Huo X W, Liu C Q, Gao L, Xu X D, Zhu N L, Cao L . Hepatoprotective effect of aqueous extract from the seeds of Orychophragmus violaceus against liver injury in mice and HepG2 cells. Int J Mol Sci, 2017,18:1197-1212.
doi: 10.3390/ijms18061197 pmid: 28617329
[8] Zhu N L, Wu H F, Xu Z Q, Liu C Q, Tian Y, Hu M G, Sun Z H, Li P F, Ma G X, Xu X D . New alkaloids with unusual spermidine moieties from the seeds of Orychophragmus violaceus and their cytoprotective properties. Rsc Adv, 2017,7:41495-41498.
doi: 10.1039/C7RA02951A
[9] Bai J S, Cao W D, Xiong J, Zeng N H, Gao S J, Katsuyoshi S . Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China. J Integr Agric, 2017,14:2490-2499.
doi: 10.1016/S2095-3119(15)61212-6
[10] Sun G D, Xu Y, Liu Y, Liu Z P . Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Appl Microbiol Biotechnol, 2014,98:10243-10253.
doi: 10.1007/s00253-014-5971-5 pmid: 25081560
[11] Wang R, Wu Y Y, Hang H T, Liu Y, Xie T X, Zhang K Y, Li H T . Orychophragmus violaceus L., a marginal land-based plant for biodiesel feedstock: Heterogeneous catalysis, fuel properties, and potential. Energ Convers Manage, 2014,84:497-502.
doi: 10.1016/j.enconman.2014.04.047
[12] Li X J, Alicen M T, Asghar S, Ling J, Lucas B, Rebecca E C, Zhang W, Li Z Y, Kent D C, Diana B, Zhang C Y, Robert E M, Edgar B C . Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants, 2018,4:711-720.
doi: 10.1038/s41477-018-0225-7 pmid: 30150614
[13] 李子先, 曹熙德, 刘东旭, 刘俊, 张作仕, 贾勇炯 . 中国种诸葛菜变种群的核型研究. 作物学报, 1994,20:595-600.
Li Z X, Cao X D, Liu D X, Liu J, Zhang Z S, Jia Y J . A study on the karyotype of some Chinese variants of Zhuge Cai,Orychophragmus violaceus. Acta Agron Sin, 1994,20:595-600 (in Chinese with English abstract).
[14] Al-Shehbaz I A, Yang G . A revision of the Chinese endemic Orychophragmus(Brassicaceae). Novon, 2000,10:349-353.
doi: 10.2307/3392983
[15] Zhou L R, Liu Z B, Wu J, Wang J M, Yang Y, Li X F . Karyotype variation and evolution in populations of the Chinese endemic Orychophragmus violaceus complex (Brassicaceae). Nord J Bot, 2008,26:375-383.
doi: 10.1111/njb.2008.26.issue-5-6
[16] Zhang L J, Dai S L . Genetic variation within and among populations of Orychophragmus violaceus(Cruciferae) in China as detected by ISSR analysis. Genet Resour Crop Evol, 2010,57:55-64.
doi: 10.1007/s10722-009-9450-2
[17] Li M M, Wu L Y, Guo J L, Sun X Q, Hang Y Y . Analyses on allozyme variation and genetic diversity of four morphological types of Orychophragmus violaceus(Brassicaceae). J Plant Resour Environ, 2012,21:44-49.
[18] Wang L, Ma X J, Yang C P . Two new infraspecific taxa of Orychophragmus violaceus(Brassicaceae) in Northeast China. Novon, 2012,22:109-113.
doi: 10.3417/2009133
[19] 吴沿友, 罗鹏 . 诸葛菜的花药培养. 园艺学报, 1996,23:404-406.
Wu Y Y, Luo P . Anther culture of Orychophragmus violaceus. Acta Hortic Sin, 1996,23:404-406 (in Chinese).
[20] 贾勇炯, 唐琳, 林宏辉, 陈放, 王幼平 . 诸葛菜离体花粉粒诱导形成花粉植株的研究. 四川大学学报(自然科学版), 1999,36:1106-1110.
Jia Y J, Tang L, Lin H H, Chen F, Wang Y P . Studies on the plant regeneration from Orychophragmus violaceus pollen. J Sichuan Univ(Nat Sci Edn), 1999,36:1106-1110 (in Chinese with English abstract).
[21] Couvreur L P, Franzke A, Al-Shehbaz I A, Bakker F T, Koch M A, Mummenhoff K . Molecular phylogenetics, temporal diversification, and principles of evolution in the Mustard Family (Brassicaceae). Mol Biol Evol, 2010,27:55-71.
doi: 10.1093/molbev/msp202 pmid: 19744998
[22] 李再云, 刘后利 . 诸葛菜染色体的减数分裂配对研究. 华中农业大学学报, 1995,14:435-439.
Li Z Y, Liu H L . A study on meiotic pairing of Orychophragmus violaceus. J Huazhong Agric Univ, 1995,14:435-439 (in Chinese with English abstract).
[23] Li Z Y, Liu H L, Luo P . Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995,91:131-136.
doi: 10.1007/BF00220869 pmid: 24169678
[24] Li Z Y, Liu H L, Heneen W K . Meiotic behaviour in intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Hereditas, 1996,125:69-75.
doi: 10.3389/fpls.2018.01557 pmid: 30450106
[25] Wu J G, Li Z Y, Liu Y, Liu H L, Fu T D . Cytogenetics and morphology of the pentaploid hybrid between Brassica napus and Orychophragmus violaceus and its progeny. Plant Breed, 1997,116:251-257.
doi: 10.1111/pbr.1997.116.issue-3
[26] Li Z Y, Cartagena J, Fukui K . Simultaneous detection of 5S and 45S rRNA genes in Orychophragmus violaceus by double fluorescence in situ hybridization. Cytologia, 2005,70:1-8.
doi: 10.1508/cytologia.70.1
[27] Lysak M A, Cheung K, Kitschke M, Bureš P . Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol, 2007,145:402-410.
doi: 10.1104/pp.107.104380 pmid: 17720758
[28] Franzke A, Lysak M A, Al-Shehbaz I A, Koch M A, Mummenhoff K . Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci, 2011,16:108-116.
doi: 10.1016/j.tplants.2010.11.005 pmid: 21177137
[29] Lichter R . Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pfanzenphysiologie, 1982,105:427-434.
doi: 10.1007/978-1-4939-8944-7_5 pmid: 30460559
[30] Nitta T, Takahata Y, Kaizuma N . Scanning electron microscopy of microspore embryogenesis in Brassica spp. Plant Cell Rep, 1997,16:406-410.
doi: 10.1007/BF01146783 pmid: 30727651
[31] Yeung E C . The canola microspore-derived embryo as a model system to study developmental processes in plants. J Plant Biol, 2002,45:119-133.
doi: 10.1007/BF03030304
[32] Joosen R, Cordewener J, Supena E D J, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K . Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol, 2007,144:155-172.
doi: 10.1104/pp.107.098723 pmid: 17384159
[33] Prem D, Solís M T, Bárány I, Rodríguez-Sanz H, Risueño M C, Testillano P S . A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled- haploid plants in Brassica napus. BMC Plant Biol, 2012,12:127-145.
doi: 10.1186/1471-2229-12-127 pmid: 22857779
[34] Ilic-Grubor K, Attree S M, Fowke L C . Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot, 1998,82:157-165.
doi: 10.1006/anbo.1998.0661
[35] Supena E D J, Winarto B, Riksen T, Dubas E, Van Lammeren A, Offringa R, Boutilier K, Custers J . Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot, 2008,59:803-814.
doi: 10.1093/jxb/erm358 pmid: 18272920
[36] Chanana N P, Dhawan V, Bhojwani S S . Morphogenesis in isolated microspore cultures of Brassica juncea, Plant Cell Tiss Organ Cult, 2005,83:169-177.
doi: 10.1007/s00709-018-1268-3 pmid: 29922944
[37] Thomas T D . The role of activated charcoal in plant tissue culture. Biotechnol Adv, 2008,26:618-631.
doi: 10.1016/j.biotechadv.2008.08.003
[38] Da Silva Dias J C . Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica, 1999,108:65-69.
pmid: 26415277
[39] 姜风英, 冯辉, 王超楠 . 羽衣甘蓝的小孢子胚诱导和植株再生. 植物生理学通讯, 2005,41:725-727.
Jiang F Y, Feng H, Wang C N . Embryogenesis and plant regeneration from isolated microspore culture of kale (Brassica oleracea L. var. acephala DC.). Bull Plant Physiol, 2005,41:725-727 (in Chinese).
[40] 方淑桂, 陈文辉, 曾小玲, 朱朝辉, 廖晓珍, 郑学立 . 结球甘蓝游离小孢子培养及植株再生. 园艺学报, 2006,33:158-160.
Fang S G, Chen W H, Zeng X L, Zhu C H, Liao X Z, Zheng X L . Isolated-microspore culture and plantlet regeneration in cabbage (Brassica oleracea L. var. capitata L.). Acta Hortic Sin, 2006,33:158-160 (in Chinese with English abstract).
[41] 申书兴, 赵前程, 刘世雄, 张成合, 李振秋 . 四倍体大白菜小孢子植株的获得与倍性鉴定. 园艺学报, 1999,26:232-237.
Shen S X, Zhao Q C, Liu S X, Zhang C H, Li Z Q . Plant regeneration from isolated microspore culture of autotetraploid Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour.) Olsson]. Acta Hortic Sin, 1999,26:232-237 (in Chinese with English abstract).
[42] Gu H H, Zhou W J, Hagberg P . High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. chinensis. Euphytica, 2003,134:239-245.
doi: 10.1023/B:EUPH.0000004945.01455.6d
[43] 李菲, 张淑江, 章时蕃, 钮心恪, 孙日飞 . 大白菜游离小孢子培养胚胎发生中的加倍机制. 园艺学报, 2006,33:974-978.
Li F, Zhang S J, Zhang S F, Niu X K, Sun R F . Embryogenesis and doubling mechanism of isolated microspore culture in Chinese cabbage (Brassica rapa ssp. pekinensis). Acta Hortic Sin, 2006,33:974-978 (in Chinese with English abstract).
[44] 耿建峰, 侯喜林, 张晓伟, 蒋武生, 原玉香, 韩永平, 姚秋菊, 成妍, 李英 . 影响白菜游离小孢子培养关键因素分析. 园艺学报, 2007,34:111-116.
Geng J F, Hou X L, Zhang X W, Jiang W S, Yuan Y X, Han Y P, Yao Q J, Cheng Y, Li Y . Isolated microspore culture in Brassica campestris ssp. Chinensis. Acta Hortic Sin, 2007,34:111-116 (in Chinese with English abstract).
[45] Leelavathi S, Reddy V S, Sen S K . Somatic-cell genetic studies in Brassica species: 2. Production of androgenetic haploid plants in Brassica nigra(L.) Koch. Euphytica, 1987,36:215-219.
doi: 10.1007/BF00730666
[46] Margale E, Chevre A M . Factors effecting embryo production from microspore culture of Brassica nigra(Koch). Cruciferae Newsl, 1991,14:100-101.
[47] Gland A, Lichter R, Schweiger H G . Genetic and exogenous factors affecting embryogenesis in isolated microspore culture of Brassica napus L. J Plant Physiol, 1988,132:613-617.
doi: 10.1016/S0176-1617(88)80264-5
[48] Zhou W J, Hagberg P, Tang G X . Increasing embryogenesis and doubling efficiency by immediate colchicines treatment of isolated microspores in spring Brassica napus. Euphytica, 2002,128:27-34.
doi: 10.1023/A:1020687517888
[49] Gu H H, Hagberg P, Zhou W J . Cold pretreatment enhances microspore embryogenesis in oil seed rape (Brassica napus L.). Plant Growth Regul, 2004,42:137-143.
doi: 10.1023/B:GROW.0000017488.29181.fa
[50] Zhang G Q, Zhang D Q, Tang G X, He Y, Zhou W J . Plant development from microspore derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol Plant, 2006,50:180-186.
doi: 10.1007/s10535-006-0004-6
[51] Shi Y, Xu G, Warrington T B, Murdoch G K, Kazala E C, Snyder C L . Microspore-derived cell suspension cultures of oilseed rape as a system for studying gene expression. Plant Cell Tiss Organ Cult, 2008,92:131-139.
doi: 10.1007/s11240-007-9313-5
[52] Prem D, Gupta K, Sarkar G, Agnihotri A . Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tiss Organ Cult, 2008,93:269-282.
doi: 10.1007/s11240-008-9373-1
[53] Leskovšek L, Jakše M, Bohanec B . Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tiss Organ Cult, 2008,93:181-189.
doi: 10.1007/s11240-008-9359-z
[1] WEN Qin, JIA Si-Si, WANG Jia-Feng, HUANG Cui-Hong, WANG Hui, CHEN Zhi-Qiang, GUO Tao. Construction and identification of haploid induction gene OsMATL mutants in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 827-836.
[2] CHEN Xin-Min,WANG Feng-Ju,LI Si-Min,ZHANG Wen-Xiang. Stable Production of Wheat Haploid and Doubled Haploid by Wheat × Maize Cross [J]. Acta Agron Sin, 2013, 39(12): 2247-2252.
[3] WU Shao-Hua,ZHANG Hong-Yu,XUE Jing-Jing,XU Pei-Zhou,WU Xian-Jun. DNA Methylation Site Analysis of Haploid, Diploid and Hybrids in Twin-Seedling Rice [J]. Acta Agron Sin, 2013, 39(01): 50-59.
[4] HUI Guo-Qiang, DU He-Wei, YANG Xiao-Gong, LIU Guang-Hui, WANG Zhen-Tong, ZHANG Yi-Rong, ZHENG Yan-Ping,YAN Jian-Bing, CHANG Ming-Tang, LI Jian-Sheng. Doubling Efficiency of Maize Haploids Treated by Different Herbicides [J]. Acta Agron Sin, 2012, 38(03): 416-422.
[5] LIANG Xiao-Hong,YI Zhi-Ben,DENG Xiao-Min,XIE Xiao-Li.
Observation and Analysis of Meiotic Behaviors of Pollen-Mother-Cell in Sorghum A6 Cytoplasmic Male Sterile Line
[J]. Acta Agron Sin, 2010, 36(4): 709-712.
[6] HE Jin-Hua, CHENG Xing-An, CHEN Zhi-Xiong, GUO Hai-Bin, LIU Xiang-Dong, LU Yong-Gen. Changes in the Pattern of Organization of Microtubules during Meiosis in Pollen Mother Cell (PMC) of Autotetraploid Rice [J]. Acta Agron Sin, 2010, 36(10): 1777-1785.
[7] SANG Yun,ZHAO Liang,ZHANG Kun-Pu,TIAN Ji-Chun, YE Bao-Xing. Mapping QTLs for Uppermost Internode Diameter and Thickness and Area of Culm Wall with Doubled-Haploid Population in Wheat  [J]. Acta Agron Sin, 2010, 36(1): 61-67.
[8] SONG Zhao-Jian,DU Chao-Qun,HU E-Ping,TANG Zhi-Qiang,CHEN Dong-Ling,HE Yu-Chi. Identification and Comparison of diploid and Tetraploid Hybrids of Oryza sativa X O.meyeriana [J]. Acta Agron Sin, 2010, 36(07): 1144-1152.
[9] CAO Yun-Ying;DUAN Hua;YANG Li-Nian;WANG Zhi-Qing;YANG Jian-Chang. Effect of Heat-Stress during Meiosis on Grain Yield of Rice Cultivars Differing in Heat-Tolerance and Its Physiological Mechanism [J]. Acta Agron Sin, 2008, 34(12): 2134-2142.
[10] CHENG Hai-Tao; JANG Hua;XUE Da-Wei;GUO Long-Biao;ZENG Da-Li;ZHANG Guang-Heng;QIAN Qian. Mapping of QTLs Underlying Tolerance to Alkali at Germination and Early Seedling Stages in Rice [J]. Acta Agron Sin, 2008, 34(10): 1719-1727.
[11] SHI Chun-Lin;JIN Zhi-Qing;ZHENG Jian-Chu;TANG Ri-Sheng. Quantitative Analysis on the Effects of High Temperature at Meiosis Stage on Seed-Setting Rate of Rice Florets [J]. Acta Agron Sin, 2008, 34(04): 627-631.
[12] YANG Jian-Chang;LIU Kai;ZHANG Shen-Feng;WANG Xue-Ming;WANG Zhi-Qin;LIU Li-Jun. Hormones in Rice Spikelets in Responses to Water Stress during Meiosis [J]. Acta Agron Sin, 2008, 34(01): 111-118.
[13] YANG De-Long;LI Wei;JING Rui-Lian;CHANG Xiao-Ping. Genetic Analysis of Quantitative Traits Associated with Soluble Carbohydrate Content of Doubled Haploid Population in Wheat(Triticum aestivum L.) Stem [J]. Acta Agron Sin, 2007, 33(09): 1543-1547.
[14] GUO Yong-Mei;MU Ping;LIU Jia-Fu;LI Zi-Chao;LU Yi-Xuan. Correlation Analysis and QTL Mapping of Grain Shape and Grain Weight in Rice under Upland and Lowland Environments [J]. Acta Agron Sin, 2007, 33(01): 50-56.
[15] YI Zhi-Ben;LIANG Xiao-Hong;ZHAO Wei-Jun;CUI Gui-Mei;SUN Yi;CUI Li-Xia. Cytolgical Observation and Analyses of A3 Cytoplasmic Male Sterility in Sorghum [J]. Acta Agron Sin, 2006, 32(12): 1909-1912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!