Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1402-1414.doi: 10.3724/SP.J.1006.2021.01072

• RESEARCH NOTES • Previous Articles    

Creation of disomic addition, substitution and translocation lines of durum wheat-Thinopyrum elongatum

DUAN Ya-Mei1,2, LUO Xian-Lei2, CHEN Shi-Qiang3, GAO Yong2, CHEN Jian-Min1,2,*(), DAI Yi1,*()   

  1. 1Institute of Agricultural Science and Technology Development / Joint International Research Laboratory of Agriculture & Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, Jiangsu, China;
    2College of Bioscience and Biotechnology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Institute of Agricultural Sciences, Lixia River Region, Yangzhou 225009, Jiangsu, China
  • Received:2020-09-04 Accepted:2020-12-02 Online:2021-07-12 Published:2020-12-28
  • Contact: CHEN Jian-Min,DAI Yi E-mail:jmchen@yzu.edu.cn;daiyi@yzu.edu.cn
  • Supported by:
    This research was supported by the Natural Science Foundation of Jiangsu(BK20180908);This research was supported by the Natural Science Foundation of Jiangsu(BK20181213);the Natural Science Foundation of Yangzhou(YZ2018097)

Abstract:

The establishment of chromosome addition, substitution and translocation lines through distant hybridization between wheat and Thinopyrum elongatum is an important approach to utilize useful genes of Th. elongatum in wheat improvement. Based on chromosome-specific molecular markers, chromosome counting, genome in situ hybridization (GISH), and non-denaturing fluorescence in situ hybridization (ND-FISH), several stable addition, substitution or translocation lines were identified from a cross between Triticum turgidum ssp. durum Langdon (AABB) and Trititrigia 8801 (AABBEE). Two 3E and 6E disomic addition lines Du-DA3E and Du-DA6E of durum wheat-Th. elongatum, a 1E (1B) disomic substitution line Du-DS1E (1B), and a 1AS-1EL disomic translocation line Du-T1AS·1EL were created in this study. The chromosome-segments of Th. elongatum could be inherited stably in these new lines, which not only increased the types of addition and substitution lines of durum wheat-Th. elongatum, but also provided special germplasm resources for the follow-up use of excellent genes of Th. elongatum in wheat improvement.

Key words: Triticum turgidum, Thinopyrum elongatum, addition line, substitution line, translocation line

Table 1

Plant materials used in this study"

材料名称
Material name
染色体数
Chromosome number
染色体组成
Chromosome composition
缩写
Abbreviations
硬粒小麦(Langdon)
Triticum turgidum ssp. durum (Langdon)
2n=28 AABB Ld
六倍体小偃麦8801
Hexaploid Trititrigia
2n=28+14=42 AABBEE 8801
二倍体长穗偃麦草
Diploid Th. elongatum
2n=14 EeEe 2X
四倍体长穗偃麦草
Tetraploid Th. elongatum
2n=28 Ee1Ee1Ee2Ee2 4X
普通小麦中国春
Common wheat Chinese spring
2n=42 AABBDD CS
中国春-长穗偃麦草1E-7E附加系
Chinese spring-Th. elongatum 1E-7E addition lines
2n=44 AABBDD+II1E-7E DA1E~7E
中国春-长穂偃麦草1EL端体附加系
Chinese spring-Th. elongatum 1EL telosomic addition line
2n=44 AABBDD+II1EL DA1EL
中国春-长穂偃麦草1ES端体附加系
Chinese spring-Th. elongatum 1ES telosomic addition line
2n=44 AABBDD+II1ES DA1ES
硬粒小麦-长穗偃麦草1E(1B)代换系
Durum wheat-Th. elongatum 1E(1B) substitution line
2n=26+2=28 AABB+II1E(1B) Du-DS1E(1B)
硬粒小麦-长穗偃麦草3E附加系
Durum wheat-Th. elongatum 3E addition line
2n=28+2=30 AABB+II3E Du-DA3E
硬粒小麦-长穗偃麦草6E附加系
Durum wheat-Th. elongatum 6E addition line
2n=28+2=30 AABB+II6E Du-DA6E
硬粒小麦-长穗偃麦草1AS-1EL易位系
Durum wheat-Th. elongatum 1AS-1EL translocation line
2n=26+2T=28 AABB+ II1AS·1EL Du-T1AS·1EL

Table 2

Molecular markers and their sequences of Th. elongatum"

标记名称
Molecular marker
引物序列Primer sequence (5'-3') 扩增染色体
Amplified chromosome
参考文献
Reference
正向Forward 反向Reverse
GSM-1 AATCAGTCATAGTATCCAAAGTCTCCG TGTTTAGAATAGGATGGGTAGAGC 1E-7E This study
GSM-2 TCTTACAGATAGGTCCCTGGCAT TGGTAGTCACCTATCCAAGAAT 1E-7E This study
GSM-3 TGTTTCTTAGTTGTTTTGTT GCCTTGACCACCATAC 1E-7E Chen et al. [37]
CSM-1E-1 GATCTGTTTACGTCGATGCCG TGCCGAACTATTTGCTCCTTG 1E, 1EL This study
CSM-1E-2 TGAGAGGCGTGAGGACCTTGCTAAT GGTTTCCCAAGTCTTGTGATGC 1E, 1ES This study
CSM-1E-3 AGGTTCATAAGAATCCATC TACTGGATTTGTCACTTGCT 1E, 1EL This study
CSM-1E-4 ATGTCAGCCTATCCTACGGGTGT ATTCGTTGGGTCACTTGTCTCCT 1E, 1ES This study
CSM-1E-5 TCCCAACCACCTTCGCATTCATT GGCGAAAGACCATCAAAAGGAGTG 1E, 1EL This study
CSM-1E-6 CGTCACCAGAGAATAACAGGAG GTTCTATGTCAAGCAGTTCCG 1E, 1EL This study
CSM-1E-7 CCCGTGTAAGGAACAGAAAC TTAAGGTCGTCCCAACAGG 1E, 1EL This study
CSM-2E-1 TCAATGTCAAGGAGGAGGGTC TGGTCAAGAAGACAAGGGAAG 2E This study
CSM-3E-1 TATTAGTCGAGCACCTGTCG ATCTTCCTTGGCATCCTTC 3E This study
CSM-3E-2 CTGAGGGTTTAATTCGTAGCG TGATGGTTTCCCACTGTTCC 3E This study
CSM-3E-3 AGAGGATTTGAGGCTGTTCG AGATGTGCCGTGTAAAGGAGT 3E This study
CSM-3E-4 TGATGAGTCGAGCAAACAACC ATGTCCCTAAAGCCAAGTCC 3E This study
CSM-3E-5 TACTCCATAGAGGCTAGAAGAAC TGTCAAAGGCAAGCAAAGC 3E This study
CSM-4E-1 GAGAAGCCTCTGCCTTTAAG ACGGCGAGTCCTTGGTC 4E Luo et al. [38]
CSM-5E-1 ACCATTAGGTCACCGCAGTCT CGTTCTCGTGTCCCTACTCTTGT 5E This study
CSM-6E-1 GAGTGCTGGGATGAAGAAG GACGAAGACTAGGCACCAG 6E This study
CSM-6E-2 GCTAATGAGGGTTACAGAGT TAAAGAGCATCGGGGAC 6E This study
CSM-6E-3 AGCTGGCTCATCCCCATTTCT CGTGTTTACTGCCCATTTGTCC 6E This study
CSM-6E-4 TTTTTCGCACCACCCTTTC TTGTTCGAGAACGGGTTGC 6E Luo et al. [38]
CSM-6E-5 ACGAGGTTTGGCCGGTAT TACTCTTTGCTGATGATAGGCTC 6E Luo et al. [38]
CSM-7E-1 CTGCGGTTCTAAAATACTGAGG AAAGCTTGCCAAATGCC 7E This study

Fig. 1

Amplification of F2 (a) and F4 (b) generations of 8801 × Langdon by genome-specific molecular markers in Th. elongatum a1-a3: amplification of markers in F2 generation. M: DL2501 marker; 1-22: different plants of F2 generation; 23: Ld; 24: 4X; 25: 8801. a1: markers GSM-1; a2: marker GSM-2; a3: marker GSM-3. b1-b4: amplification of marker GSM-3 to F4 generation. M: DL2501 marker; 1-13: different plants of F4 generation; b1: line Du_No.1; b2: line Du_No.3; b3: line Du_No.6; b4: line Du_No.8; 14: Ld; 15: 4X; 16: 8801."

Table 3

Amplification of Th. elongatum by chromosome-specific molecular markers"

标记名称
Molecular marker
扩增染色体
Amplified chromosome
Du_No.1 Du_No.3 Du_No.6 Du_No.8
CSM-1E-1 1E, 1EL + - - +
CSM-2E-1 2E - - - -
CSM-3E-1 3E - + - -
CSM-4E-1 4E - - - -
CSM-5E-1 5E - - - -
CSM-6E-1 6E - - + -
CSM-7E-1 7E - - - -
CSM-1E-2 1E, 1ES + * * -
CSM-1E-3 1E, 1EL + * * +
CSM-1E-4 1E, 1ES + * * -
CSM-1E-5 1E, 1EL + * * +
CSM-1E-6 1E, 1EL + * * +
CSM-1E-7 1E, 1EL + * * +
CSM-3E-2 3E * + * *
CSM-3E-3 3E * + * *
CSM-3E-4 3E * + * *
CSM-3E-5 3E * + * *
CSM-6E-2 6E * * + *
CSM-6E-3 6E * * + *
CSM-6E-4 6E * * + *
CSM-6E-5 6E * * + *

Fig. 2

Amplification of F5 generation of 8801×Langdon by the chromosome-specific molecular markers in Th. elongatum M: DL2501 marker; a: line Du_No.1, marker CSM-1E-1; b: line Du_No.3, marker CSM-3E-1; c: line Du_No.6, marker CSM-6E-4; d: line Du_No.8, marker CSM-1E-1; 1: Ld; 2: CS; 3: 4X; 4: 8801; 5-14: different plants of F5 generation."

Fig. 3

Amplification of line Du_No.8 by the 1EL and 1ES chromosome arm-specific markers M: DL2501 marker; a: CSM-1E-3, amplified the long arm of 1E chromosome (1EL); b: CSM-1E-4, amplified the short arm of 1E chromosome (1ES); 1: Ld; 2: CS; 3: 4X; 4: 8801. 5-9: randomly selected individual plant."

Fig. 4

Mitotic metaphase chromosomes of root tips of four lines from F4 generation a: line Du_No.1, 2n=28; b: line Du_No.3, 2n=30; c: line Du_No.6, 2n=30; d: line Du_No.8, 2n=28."

Fig. 5

GISH and ND-FISH patterns of four lines a1: GISH of line Du_No.3; a2: ND-FISH on the same metaphase; a3: the E chromosomes in a2; a4: the 3E chromosome of 8801. b1: GISH of line Du_No.6; b2: ND-FISH on the same metaphase; b3: the E chromosomes in b2; b4: the 6E chromosome of 8801. c1: GISH of line Du_No.1; c2: ND-FISH on the same metaphase; c3: the E chromosomes in c2; c4: the 1E chromosome of 8801; c5: the 1B chromosome of 8801. d1: GISH of line Du_No.8; d2: ND-FISH on the same metaphase; d3: the E chromosomes in d2; d4: the 1E chromosome of 8801; c5: the 1A chromosome of 8801. The green fluorescence signals show the chromosomes of Th. elongatum in GISH. The arrows refer to chromosomes of Th. elongatum in ND-FISH. Bar: 10 μm."

Table 4

Agronomic traits of durum wheat-Th. elongatum addition, substitution lines and their parents"

材料
Materials
调查株数
Number of plants
株高
Plant height
(cm)
穗长
Spike length
(cm)
小穗粒数
Kernel number per spikelet
每穗小穗数
Spikelet number per spike
每穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
旗叶面积
Flag leaf area (cm2)
Langdon 22 169.8±10.4 d 9.7±1.0 ab 2.3±0.2 bc 24.7±1.9 bc 56.1±7.3 c 37.2±1.4 d 30.6±4.7 a
8801 18 178.6±13.3 d 18.4±1.6 e 2.1±0.3 ab 20.9±2.7 a 43.6±4.5 ab 18.0±3.1 a 47.4±8.8 bc
Du-DA3E 10 95.1±15.1 a 9.3±0.5 a 2.6±0.4 c 21.0±2.5 a 53.9±7.7 bc 25.2±4.9 b 42.3±13.9 b
Du-DA6E 10 117.1±10.3 b 12.8±0.9 d 3.5±0.3 d 26.4±2.5 c 93.1±10.0 d 30.7±3.1 c 57.2±8.0 c
Du-DS1E (1B) 10 109.1±11.8 b 12.0±2.0 cd 1.8±0.6 a 23.7±2.1 b 42.2±16.9 a 20.1±3.3 a 48.1±9.6 bc
Du-T1AS·1EL 12 134.8±7.7 c 10.7±0.8 bc 2.5±0.4 bc 23.6±1.4 b 58.9±9.9 c 22.5±2.6 ab 54.1±4.2 c

Fig. 6

Phenotypes of seeds and spikes of durum-Th. elongatum addition lines and substitution line, and their parents A, a: Langdon; B, b: 8801; C, c: addition line Du-DA3E; D, d: addition line Du-DA6E; E, e: substitution line Du-DS1E(1B); F, f: translocation line Du-T1AS·1EL. Bar: 10 mm."

Fig. S1

Selection of chromosomal-specific molecular markers based on the amplification results in CS-Th. elongatum addition lines M: DL2501 marker; 1-7: CS-Th. elongatum 1E-7E addition lines; 8: Th. elongatum (2x); 9: Ld; 10: CS; 11: 8801. Specific markers: CSM-1E-1, CSM-2E-1, CSM-3E-5, CSM-4E-1, CSM-5E-1, CSM-6E-2, CSM-7E-1, GSM-2."

Fig. S2

PCR amplification of the 1E chromosome-specific molecular markers in CS-Th. elongatum 1E telodisomic addition lines M: DL2501 marker; a: CSM-1E-3, amplified the long arm of the 1E chromosome (1EL); b: CSM-1E-3, amplified the short arm of the 1E chromosome (1ES). 1: CS-Th. elongatum 1E addition line; 2: CS-Th. elongatum 1EL telodisomic addition line (DA1EL); 3: CS-Th. elongatum 1ES telodisomic addition line (DA1ES); 4: Th. elongatum (2x); 5: Ld."

[1] 赵鹏, 秦明波. 植物染色体工程与育种. 生物学通报, 1996, 31(7): 4‒7.
Zhao P, Qin M B. Plant chromosome engineering and breeding. Bull Biol, 1996,31(7):4-7 (in Chinese).
[2] 王林生, 陈佩度. 普通小麦外源染色体易位系的诱导及其在育种上的应用. 生物学通报, 2007,42(2):9-11.
Wang L S, Chen P D. Induction of aline chromosome translocation lines in common wheat and its application in breeding. Bull Biol, 2007,42(2):9-11 (in Chinese).
[3] 刘大钧, 陈佩度, 吴沛良, 王耀南, 邱伯行, 王苏玲. 硬粒小麦-簇毛麦双二倍体. 作物学报, 1986,12:155-162.
Liu D J, Chen P D, Wu P L, Wang Y N, Qiu B X, Wang S L. Durum wheat- Dasypyrum villosum diploid. Acta Agron Sin, 1986,12:155-162 (in Chinese with English abstract).
[4] 韩方普, 李集临. 硬粒小麦、提莫菲维小麦与四倍体长穗偃麦草属间杂种的形态和细胞遗传学研究. 遗传学报, 1993,20:44-49.
Han F P, Li J L. Morphological and cytogenetic studies on hybrids of Triticum turgidum, Triticum timopheevii and tetraploid Thiuopyrum elougatum. Acta Genet Sin, 1993,20:44-49 (in Chinese with English abstract).
[5] Guo X, Shi Q H, Wang J, Hou Y L, Wang Y H, Han F P. Characterization and genome changes of new amphiploids from wheat wide hybridization. J Genet Genom, 2015,42:459-461.
[6] 王洪刚, 刘树兵, 李兴锋, 高居荣, 封德顺, 陈冬花. 六个八倍体小偃麦的选育和鉴定. 麦类作物学报, 2006,26(4):6-10.
Wang H G, Liu S B, Li X F, Gao J R, Feng D S, Chen D H. Breeding and identification of six octoploid Trititrigia. J Triticeae Crops, 2006,26(4):6-10 (in Chinese with English abstract).
[7] 丁志远. 小麦异附加系种质资源的开发利用初探. 甘肃农业科技, 2006, ( 5):15-17.
Ding Z Y. Preliminary study on utilization of alien chromosome addition lines of wheat. Gansu Agric Sci Technol, 2006, ( 5):15-17 (in Chinese with English abstract).
[8] Li X J, Hu X G, Hu T Z, Li G, Ru Z G, Zhang L L, Lang Y M. Identification of a novel wheat- Thinopyrum ponticum addition line revealed with cytology, SSR, EST-SSR, EST-STS and PLUG markers. Cereal Res Commun, 2015,43:1-10.
[9] Liu H P, Dai Y, Chi D, Huang S, Li H F, Duan Y M, Cao W G, Gao Y, Fedak G, Chen J M. Production and molecular cytogenetic characterization of a durum wheat- Thinopyrum elongatum 7E disomic addition line with resistance to Fusarium head blight. Cytogenet Genome Res, 2018,153:165-173.
doi: 10.1159/000486382 pmid: 29421795
[10] 穆素梅, 钟冠昌, 李振声, 李滨. 利用缺体回交法选育小黑麦异代换系的研究. 中国生态农业学报, 1996,4(1):33-36.
Mu S M, Zhong G C, Li Z S, Li B. Study on breeding of different substitution lines of Triticale by backcrossing. Chin J Eco-Agric, 1996,4(1):33-36 (in Chinese with English abstract).
[11] Hu L J, Li G R, Zeng Z X, Chang Z J, Liu C, Zhou J P, Yang Z J. Molecular cytogenetic identification of a new wheat- Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011,177:169-177.
[12] 李桂英, 王琳清, 施巾帼. 辐照花粉对普通小麦×窄颖赖草杂种的细胞学效应. 核农学报, 2000,14:6-11.
Li G Y, Wang L Q, Shi J G. Cytological effects of irradiated pollen on the hybrid of Triticum aestivum × Leymus angustus. Acta Agric Nucl Sin, 2000,14:6-11 (in Chinese with English abstract).
[13] 李洪杰, 郭北海, 张艳敏, 李义文, 杜立群, 李银心, 贾旭, 朱至清. 利用组织培养和辐射诱变创造高频率小麦与簇毛麦染色体易位. 遗传学报, 2000,27:511-519.
Li H J, Guo B H, Zhang Y M, Li Y W, Du L Q, Li Y X, Jia X, Zhu Z Q. Using tissue culture and radiation mutagenesis to create high-frequency chromosomal translocation between Triticum aestivum and Dasypyrum villosum. Acta Genet Sin, 2000,27:511-519 (in Chinese with English abstract).
[14] 张璐璐, 陈士强, 李海凤, 刘慧萍, 戴毅, 高勇, 陈建民. 小麦-长穗偃麦草7E抗赤霉病易位系培育. 中国农业科学, 2016,49:3477-3488.
Zhang L L, Chen S Q, Li H F, Liu H P, Dai Y, Gao Y, Chen J M. Development of Wheat- Thinopyrum elongatum translocation lines resistant to Fusarium head blight. Sci Agric Sin, 2016,49:3477-3488 (in Chinese with English abstract).
[15] Friebe B, Mukai Y, Dhaliwal H S, Martin T J, Gill B S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet, 1991,81:381-389.
doi: 10.1007/BF00228680 pmid: 24221269
[16] Friebe B, Jiang J, Knott D R, Gill B S. Compensation indices of radiation-induced wheat- Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 1994,34:400-404.
[17] Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004,47:215-223.
doi: 10.1139/g03-095 pmid: 15060618
[18] Fu S L, Lyu Z L, Qi B, Guo X, Li J, Liu B, Han F P. Molecular cytogenetic characterization of wheat- Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight. J Genet Genomics, 2012,39:103-110.
[19] He F, Xu J Q, Qi X L, Wang H G. Molecular cytogenetic characterization of two partial wheat Elytrigia elongatum amphiploids resistant to powdery mildew. Plant Breed, 2013,132:553-557.
[20] Zheng Q, Klindworth D L, Friesen T L, Liu A F, Li Z S, Zhong S B, Jin Y, Xu S S. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci, 2014,54:2663-2672.
[21] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li S F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R,. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
doi: 10.1126/science.aba5435 pmid: 32273397
[22] Omielan J A, Epstein E, Dvořák J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome, 1991,34:961-974.
[23] Taeb M, Koebner R M, Forster B P. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome, 1993,36:825-830.
doi: 10.1139/g93-110 pmid: 18470030
[24] 孟林, 杨宏新, 毛培春, 高洪文. 偃麦草属植物种间苗期抗旱性评价. 草业学报, 2011,20(5):34-41.
Meng L, Yang H X, Mao P C, Gao H W. Evaluation of drought resistance of Thinopyrum plants in seedling stage. Acta Pratacult Sin, 2011,20(5):34-41 (in Chinese with English abstract).
[25] 李振声. 创造新物种与改良旧物种—远缘杂交在作物育种中的作用. 中国农业科学, 1977,10(3):38-43.
Li Z S. Creating new species and improving old species-The role of distant hybridization in crop breeding. Sci Agric Sin, 1977,10(3):38-43 (in Chinese).
[26] Wang R R C, Lu B R. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol, 2014,52:697-705.
[27] 刘登才, 郑有良, 王志容, 侯永翠, 兰秀锦, 魏育明. 影响小麦赤霉病抗性的Lophopyrum elongatum染色体定位. 四川农业大学学报, 2001, 19(3): 200‒205.
Liu D C, Zhen Y L, Wang Z R, Huo Y C, Lan X J, Wei Y M. Chromosomal location of Lophopyrum elongatum affecting FHB resistance of wheat. J Sichuan Agric Univ, 2001,19(3):200-205 (in Chinese with English abstract).
[28] Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat ( Triticum aestivum)-Lophopyrum, genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet, 2004,108:808-813.
doi: 10.1007/s00122-003-1492-9 pmid: 14628111
[29] Shen X, Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum, chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed, 2006,125:424-429.
[30] Jauhar P P, Peterson T S. Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line. Plant Genome, 2011,4:102-109.
[31] Jauhar P P, Peterson T S. Registration of DGE-2, a durum wheat disomic alien substitution line 1E(1A) involving a diploid wheatgrass chromosome. J Plant Regist, 2012,6:221-223.
[32] Jauhar P P, Peterson T S. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome. J Plant Regist, 2013,7:257-259.
[33] Anderson J M, Bucholtz D L, Sardesai N, Santini J B, Gyulai G, Williams C E, Goodwin S B. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum × Lophopyrum elongatum disomic substitution lines. Euphytica, 2010,172:251-262.
[34] Dewey D R. Salt tolerance of twenty-five strains of Agropyron. Agron J, 1960,52:631-635.
[35] Zhong G Y, Dvorak J. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L. genomes. Theor Appl Genet, 1995,90:229-236.
doi: 10.1007/BF00222206 pmid: 24173895
[36] 王景雪, 孙毅, 高武军. 一种简便实用的植物总DNA提取方法. 山西大学学报, 2000,23:271-272.
Wang J X, Sun Y, Gao W J,. A simple and practical method for extracting plant total DNA. J Shanxi Univ, 2000, 23: 271‒272 (in Chinese with English abstract).
[37] Chen S Q, Huang Z F, Dai Y, Qin S W, Gao Y Y, Zhang L L, Gao Y, Chen J M. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One, 2013,8:e65122.
[38] 罗贤磊, 戴毅, 陶海霞, 陈士强, 李海凤, 段亚梅, 高勇, 陈建民. 硬粒小麦-长穗偃麦草2E和4E附加系及E染色体传递. 西北植物学报, 2019,39:953-962.
Luo X L, Dai Y, Tao H X, Chen S Q, Li H F, Duan Y M, Gao Y, Chen J M. Durum- Thinopyrum elongatum 2E and 4E addition lines and E chromosome transmission. Acta Bot Boreali-Occident Sin, 2019,39:953-962 (in Chinese with English abstract).
[39] Kato A, Lamb J C, Birchler J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA, 2004,101:13554-13559.
doi: 10.1073/pnas.0403659101 pmid: 15342909
[40] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014,55:313-318.
pmid: 24782110
[41] 顾爱侠, 李雪姣, 冯大领, 王彦华, 陈雪平, 申书兴. 基因组原位杂交中封阻DNA制备方法研究. 河北农业大学学报, 2010,33(5):77-79.
Gu A X, Li X J, Feng D L, Wang Y H, Chen X P, Shen S Z. Preparation of blocking DNA in genomic in situ hybridization. J Agric Univ Hebei, 2010,33(5):77-79 (in Chinese with English abstract).
[42] 侯贤清, 贾志宽, 韩清芳, 王维, 丁瑞霞, 聂俊峰, 李永平. 轮耕对宁南旱区冬小麦花后旗叶光合性能及产量的影响. 中国农业科学, 2011,44:3108-3117.
Hou X Q, Jia Z K, Han Q F, Wang W, Ding R X, Nie J F, Li Y P. Effects of rotational tillage on flag leaf photosynthetic characteristics and yield after anthesis of winter wheat in arid areas of southern Ningxia. Sci Agric Sin, 2011, 44: 3108‒3117 (in Chinese with English abstract).
[43] Li D Y, Li T H, Wu Y L, Zhang X H, Zhu W, Wang Y, Zeng J, Xu L L, Fan X, Sha L, Zhang H Q, Zhou Y H, Kang H Y. FISH-Based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front Plant Sci, 2018,9:526.
doi: 10.3389/fpls.2018.00526 pmid: 29765383
[44] 刘树兵, 王洪刚. 抗白粉病小麦-中间偃麦草(Thinopyrum intermedium, 2n = 42)异附加系的选育及分子细胞遗传鉴定. 科学通报, 2002,47:1500-1503.
Liu S B, Wang H G. Breeding and molecular cytogenetic identification of powdery mildew resistant wheat- Thinopyrum intermedium (Thinopyrum intermedium, 2n = 42) addition lines. Chin Sci Bull, 2002,47:1500-1503 (in Chinese).
[45] Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci, 2009,50:358-363.
[46] 张学勇. 普通小麦异源易位系的产生及利用. 遗传, 1991,13(5):39-44.
Zhang X Y. Production and utilization of heterologous translocation lines in common wheat. Hereditas, 1991,13(5):39-44 (in Chinese).
[47] 戴毅. 小麦-黑麦-偃麦草三属杂种种质创制及分子细胞遗传学研究. 扬州大学博士学位论文, 江苏扬州, 2017.
Dai Y. Development of Germplasms for Triticum-Secale- Thinopyrum trigeneric Hybrids and Molecular Cytogenetic Research. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[48] Linc G, Sepsi A, Molnár-láng M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongatum E genome. Cytogenet Genome Res, 2012,136:138-144.
doi: 10.1159/000334835 pmid: 22188811
[49] 李海凤, 刘慧萍, 戴毅, 黄帅, 张军, 高勇, 陈建民. 四倍体小麦背景中长穗偃麦草E染色体传递特征. 遗传, 2016,38:1021-1030.
Li H F, Liu H P, Dai Y, Huang S, Zhang J, Gao Y, Chen J M. Transmitting characters of individual E chromosomes of Thinopyrum elongatum in Triticum turgidum background. Hereditas, 2016,38:1021-1030 (in Chinese with English abstract).
[50] Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A. Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res, 2005,109:328-344.
pmid: 15753593
[51] 谢枫, 吴跃进, 杨阳, 倪晓宇, 余立祥, 刘斌美, 王钰. 不同小麦品种籽粒产量对低氮胁迫的响应及其与旗叶光合特性的关系. 生物学杂志, 2018,35(6):42-45.
Xie F, Wu Y J, Yang Y, Ni X Y, Yu L X, Liu B M, Wang Y. Yield response of wheat cultivars to low nitrogen stress and its relationship with photosynthetic traits in flab leaves. J Biol, 2018,35(6):42-45 (in Chinese with English abstract).
[52] 陈士强, 黄泽峰, 戴毅, 秦树文, 高营营, 高勇, 陈建民. 长穗偃麦草E组染色体对小麦光合速率和产量性状的效应. 扬州大学学报, 2013,34(1):50-55.
Chen S Q, Huang Z F, Dai Y, Qin S W, Gao Y Y, Gao Y, Chen J M. Effect of E chromosomes of Thinopyrum elongatum on photosynthesis and yield characters in wheat. J Yangzhou Univ, 2013, 34(1): 50‒55 (in Chinese with English abstract).
[53] 陈士强, 何震天, 张容, 王建华, 王锦荣, 陈建民, 陈秀兰. 长穗偃麦草优异基因的染色体定位及应用. 植物遗传资源学报, 2015,16:1062-1066.
Chen S Q, He Z T, Zhang R, Wang J H, Wang J R, Chen J M, Chen X L. Chromosomal localization of excellent genes in Thinopyrum elongatum and Thinopyrum ponticum and their application in wheat improvement. J Plant Genet Resour, 2015,16:1062-1066 (in Chinese with English abstract).
[54] Kumar A, Garg M, Kaur N, Chunduri V, Sharma S, Misser S, Kumar A, Tsujimoto H, Dou Q W, Gupta R K. Rapid development and characterization of chromosome specific translocation line of Thinopyrum elongatum with improved dough strength. Front Plant Sci, 2017,8:1593.
doi: 10.3389/fpls.2017.01593 pmid: 28959271
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!