Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1391-1401.doi: 10.3724/SP.J.1006.2021.02054

• RESEARCH NOTES • Previous Articles     Next Articles

Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.)

LUO Lan1, LEI Li-Xia1, LIU Jin2,3, ZHANG Rui-Hua4, JIN Gui-Xiu4, CUI Di2, LI Mao-Mao3, MA Xiao-Ding2,*(), ZHAO Zheng-Wu1,*(), HAN Long-Zhi2,*()   

  1. 1Chongqing Normal University, Chongqing 401331, China
    2National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
    4Linyi Academy of Agricultural Sciences, Linyi 276000, Shandong, China
  • Received:2020-08-13 Accepted:2020-11-13 Online:2021-07-12 Published:2020-12-29
  • Contact: MA Xiao-Ding,ZHAO Zheng-Wu,HAN Long-Zhi E-mail:maxiaoding@caas.cn;zhaozhengwu513@sina.com;hanlongzhi@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100101);This study was supported by the National Key Research and Development Program of China(2016YFD0100301);the National Natural Science Foundation of China(31671664);the CAAS Science and Technology Innovation Program, Protective Program of Crop Germplasm of China(2018NWB036-01);the CAAS Science and Technology Innovation Program, Protective Program of Crop Germplasm of China(2018NWB036-12-2);the National Infrastructure for Crop Germplasm Resources(NICGR2018-001)

Abstract:

In former study, we constructed a chromosome segment substitution lines (CSSLs) of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of Nipponbare (Oryza sativa L.). In this study, in order to investigate 11 yield-related traits, such as tillering number, grains per panicle and grain shapes, the CSSLs were planted in Beijing, Linyi and Nanchang. The results of quantitative trait loci (QTLs) for yield-related traits showed that a total of 68 QTLs were detected, including 4 QTLs for plant height, 5 QTLs for panicle length, 2 QTLs for tillering number, 7 QTLs for primary branch grain number, 8 QTLs for primary branch grain number, 8 QTLs for secondary branch grain number, 10 QTLs for secondary branch grain number, 6 QTLs for grains per panicle, 7 QTLs for 1000-grain weight, 8 QTLs for grain length and 3 QTLs for grain width. LOD score of the detected QTLs ranged from 2.50 to 12.66. The phenotypic variation explained by these QTLs ranged from 4.67% to 27.79%. There were 15 QTLs with a contribution rate more than 15%, 24 QTLs overlapped with the reported loci or gene position, 44 QTLs newly detected loci. In addition, 6 QTLs were stably detected at two sites, and 1 QTL (qTGW2) as a novel QTL was detected at three sites. Finally, the reliability of the three QTLs of qPH7, qPBPP8-2 and qGW10 was verified by BSA. Our results will be helpful for the subsequent cloning of yield-related trait genes and further analysis of their genetic basis and molecular regulation mechanism.

Key words: common wild rice (Oryza rufipogon Griff.), chromosome segment substitution lines (CSSLs), yield-related traits, QTL analysis

Fig. 1

Frequency distribution of 11 yield-related traits in the CSSLs The vertical axis of each figure represents the number of CSSL individuals. The blue, red and green rectangles represent the distribution of eleven yield-related traits in the CSSLs at the Beijing, Linyi and Nanchang locations, respectively. The blue, red, and green triangles represent the positions of the means of Nipponbare in Beijing, Linyi, and Nanchang, respectively."

Table 1

Statistics of yield-related traits of Nipponbare and the CSSLs in Beijing, Linyi and Nanchang"

性状
Trait
北京Beijing 临沂Linyi 南昌Nanchang
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
株高 PH (cm) 96.30 108.02±10.07 9.33 87.75-133.75 94.64 103.34±10.95 10.59 80.30-134.82 95.00 100.31±9.76 9.73 70.20-130.00
穗长 PL (cm) 19.68 19.97±1.53 7.68 15.07-24.94 21.59 22.29±2.03 9.10 16.64-26.96 21.74 22.32±2.01 9.01 17.78-28.03
分蘖数 TN 13.00 14.30±2.14 14.96 8.80-20.00 17.21 16.24±2.89 17.78 9.00-24.17 13.60 11.83±1.58 13.38 7.80-15.40
一次枝梗数 PBPP 10.23 10.72±1.42 13.27 7.17-15.17 10.69 10.99±1.56 14.18 8.42-19.67 9.63 10.52±1.50 14.27 6.38-15.75
一次枝梗粒数PBGN 63.42 62.50±11.28 18.04 30.50-00.17 60.60 61.79±8.65 14.00 42.50-84.83 57.38 62.79±10.57 16.84 35.38-111.75
二次枝梗数 SBPP 15.17 12.65±4.25 33.61 5.08-29.75 21.38 20.85±7.13 34.20 6.42-63.00 17.13 18.60±5.21 27.99 9.00-43.75
二次枝梗粒数 SBGN 41.79 33.97±12.04 35.46 11.08-75.17 63.02 59.58±24.91 41.80 13.92-208.17 45.75 53.05±19.48 36.72 20.75-181.63
每穗粒数 GPP 105.21 96.46±16.51 17.11 57.58-156.67 123.63 121.37±30.55 25.17 62.67-288.25 103.13 115.84±24.04 20.75 77.50-258.63
千粒重 TGW (g) 23.81 23.21±1.92 8.28 17.95-28.30 26.58 25.81±1.76 6.82 19.71-30.01 25.68 24.51±2.03 8.26 16.39-28.87
粒长 GL (mm) 6.60 6.74±0.29 4.36 6.21-7.57 6.94 7.04±0.29 4.17 6.34-7.89 6.93 7.07±0.40 5.66 6.27-8.85
粒宽 GW (mm) 3.20 3.22±0.10 3.09 2.92-3.44 3.39 3.34±0.11 3.34 2.97-3.60 3.37 3.31±0.15 4.64 2.49-3.60

Fig. 2

Mapping locations of QTLs associated with yield-related traits detected in Beijing, Linyi, and Nanchang The definitions of the abbreviations for the symbols representing the QTLs are listed in Table 2. The position of each marker is based on the physical distance shown to the left of each chromosome, and the molecular marker is shown on the right. The green characters represent the names of the QTLs detected at two sites, and the blue characters represent the name of the QTL detected at three sites."

Table 2

QTL information of yield-related traits detected in the CSSLs in Beijing, Linyi, and Nanchang"

性状
Trait
位点
QTL
染色体
Chr.
标记名称
Marker
北京Beijing 临沂Linyi 南昌Nanchang
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
株高PH qPH2 2 DX-C2-13 5.87 20.74 6.06 2.63 10.90 4.17
qPH5 5 DX-C5-10 3.54 11.80 6.54
qPH7 7 Indel-c7-1 2.93 9.86 5.91
qPH8 8 DX-C8-12 2.80 8.99 5.52
穗长PL qPL1 1 01-009 3.06 9.17 0.61
qPL2-1 2 DX-C2-13 5.48 17.36 0.86
qPL2-2 2 02-067 3.26 12.87 1.06 3.37 11.88 1.07
qPL5 5 05-028 3.39 10.42 2.08
qPL10 10 DX-S10-1 2.66 8.06 0.94
分蘖数TN qTN1-1 1 DX-C1-2 3.03 10.96 -1.31
qTN1-2 1 010-060 3.89 13.32 -1.70
一次枝梗数PBPP qPBPP1-1 1 DX-C1-6 2.77 9.25 1.03
qPBPP1-2 1 DX-C1-10 2.68 8.34 2.33
qPBPP3 3 DX-C3-8 3.08 9.86 -0.69
qPBPP5 5 DX-C5-3 3.48 11.23 1.05
qPBPP8-1 8 DX-C8-11 4.23 6.79 -1.41
qPBPP8-2 8 DX-C8-12 7.98 13.99 1.36
一次枝梗数PBPP qPBPP8-3 8 DX-S8-14 5.43 18.54 1.23
一次枝梗粒数PBGN qPBGN1-1 1 DX-C1-3 3.00 9.85 4.05
qPBGN1-2 1 DX-C1-10 3.74 12.29 -17.18
qPBGN1-3 1 01-046 4.10 17.32 4.94
qPBGN3 3 DX-C3-28 2.61 8.18 -5.57
qPBGN8-1 8 DX-C8-11 4.70 7.45 -10.34
qPBGN8-2 8 DX-C8-12 9.27 16.35 10.25
qPBGN8-3 8 DX-S8-14 2.90 9.33 6.36
qPBGN11 11 DX-S11-10 3.11 9.86 6.12
二次枝梗数SBPP qSBPP1 1 DX-C1-7 3.26 8.86 3.50
qSBPP2-1 2 DX-C2-1 5.52 15.83 10.49
qSBPP2-2 2 DX-C2-2 9.46 23.99 7.76
qSBPP2-3 2 02-057 5.26 12.01 2.71
qSBPP4-1 4 DX-C4-12 3.68 8.10 -1.51
qSBPP4-2 4 S4-12-2 5.50 15.75 -5.73
qSBPP6-1 6 DX-C6-2 3.17 13.08 2.93
二次枝梗数SBPP qSBPP6-2 6 S6-9-1 3.09 6.71 2.27
二次枝梗粒数SBGN qSBGN2-1 2 DX-C2-1 12.66 27.79 56.08
qSBGN2-2 2 DX-C2-2 8.56 21.39 20.58
qSBGN2-3 2 02-057 4.33 9.79 6.87
qSBGN3-1 3 DX-S3-16 3.90 6.99 20.08
qSBGN3-2 3 DX-S3-17 4.03 15.34 17.26
qSBGN4-1 4 DX-C4-2 4.93 9.03 -15.61
qSBGN4-2 4 DX-C4-8 2.68 4.67 -11.22
qSBGN4-3 4 DX-C4-12 4.64 10.55 -4.84
qSBGN6-1 6 DX-C6-2 2.85 10.56 9.59
qSBGN6-2 6 S6-9-1 4.21 9.47 7.58
每穗粒数GPP qGPP1 1 01-046 4.39 13.92 14.35
qGPP2 2 DX-C2-1 4.02 14.43 37.54
qGPP4 4 S4-12-2 3.55 12.58 -19.21
qGPP6-1 6 06-013 3.26 13.45 20.53
qGPP6-2 6 06-037 5.14 17.43 14.15
qGPP11 11 DX-S11-10 3.08 9.96 10.70
千粒重TGW qTGW2 2 02-008 4.39 14.36 -2.79 3.26 9.19 -1.98 4.21 10.96 -2.56
qTGW3 3 DX-C3-1 3.27 10.64 1.31
qTGW8-1 8 DX-C8-3 4.07 11.68 -3.14
qTGW8-2 8 DX-S8-14 3.02 8.54 -1.12 3.07 7.86 -1.27
qTGW9-1 9 DX-C9-4 2.90 8.12 1.33
qTGW9-2 9 DX-C9-10 3.02 7.81 -2.15
qTGW12 12 S12-6-3 5.28 14.11 -2.38
粒长GL qGL1 1 DX-C1-18 5.29 16.65 0.42
qGL2 2 02-067 3.13 10.71 0.13 2.86 7.12 0.15
qGL3-1 3 DX-C3-8 3.89 13.44 0.17
qGL3-2 3 indel-c3-12 3.08 9.22 0.12
qGL3-3 3 DX-S3-17 5.75 15.14 0.37
qGL3-4 3 DX-C3-23 4.78 14.90 0.17 5.69 14.95 0.25
qGL4 4 S4-12-2 3.14 10.68 0.18
qGL10 10 DX-C10-8 3.55 8.88 0.20
粒宽GW qGW3 3 DX-S3-17 2.50 10.06 -0.11
qGW8 8 DX-C8-15 4.59 17.86 -0.07 3.53 14.49 -0.07
qGW10 10 DX-C10-10 2.56 10.33 -0.08

Fig. 3

Frequency distributions of plant height, primary branches per panicle and grain width in the secondary segregated populations and Manhattan plot of ?(SNP-index) A: frequency distribution of plant height in secondary segregated population related of qPH7; B: ?(SNP-index) graph of plant height extreme mixed pools; C: frequency distribution of primary branches per panicle in secondary segregated population related of qPBPP8-2; D: ?(SNP-index) graph of primary branches per panicle extreme mixed pools; E: frequency distribution of grain width in secondary segregated population related of qGW10; F: ?(SNP-index) graph of grain width extreme mixed pools. The blue and red triangles represent the positions of the means of Nipponbare and its related CSSL, respectively."

[1] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019,49:1185-1212.
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci Sin (Vitae), 2019,49:1185-1212 (in Chinese).
[2] 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018,40:841-857.
Wu B, Hu W, Xing Y Z. The history and prospect of rice genetic breeding in China. Hereditas, 2018,40:841-857 (in Chinese with English abstract).
[3] Yan S, Zou G H, Li S J, Wang H, Liu H Q, Zhai G W, Guo P, Song H M, Yan C J, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet, 2011,123:1173-1181.
doi: 10.1007/s00122-011-1657-x pmid: 21805338
[4] Monna L, Kitazawa N, Yoshino R, Lisa M, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564
[5] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf ( sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002,99:9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303
[6] Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001
[7] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCF D3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013,504:406-410.
doi: 10.1038/nature12878 pmid: 24336215
[8] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H.E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature, 2013,504:401-405.
doi: 10.1038/nature12870 pmid: 24336200
[9] Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005,46:79-86.
doi: 10.1093/pcp/pci022 pmid: 15659436
[10] Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice ( Oryza sativa L.). Planta, 2005,222:604-612.
doi: 10.1007/s00425-005-0007-0 pmid: 16021500
[11] Huang X, Qian Q, Liu Z, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410
[12] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, R. Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[13] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386.
[14] Jin J, Hua L, Zhu Z, Tan L B, Zhao X H, Zhang W F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gua P, Xie D X, Sun C Q. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016,28:2453-2463.
doi: 10.1105/tpc.16.00379 pmid: 27634315
[15] Huo X, Wu S, Zhu Z, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783
[16] Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
doi: 10.1007/s00122-008-0913-1 pmid: 19020856
[17] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[18] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[19] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[20] Wang S K, Wu K, Yuan Q B, Liu X, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[21] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[22] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018,9:1240.
doi: 10.1038/s41467-018-03616-y pmid: 29588443
[23] Ma X D, Han B, Tang J H, Zhang J N, Cui D, Geng L Y, Zhou H Y, Li M M, Han L Z. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufifipogon Griff) in the background of the japonica rice cultivar Nipponbare(Oryza sativa L.). Plant Physiol Biochem, 2019,144:274-282.
doi: 10.1016/j.plaphy.2019.09.041 pmid: 31593900
[24] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018,44:1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract).
[25] Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice ( Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006,88:93-104.
doi: 10.1017/S0016672306008408 pmid: 17125584
[26] 马小定, 唐江红, 张佳妮, 崔迪, 李慧, 黎毛毛, 韩龙植. 东乡野生稻与日本晴多态性标记的开发. 作物学报, 2019,45:316-321.
Ma X D, Tang J H, Zhang J N, Cui D, Li H, Li M M, Han L Z. Development of molecular markers polymorphic between Dongxiang wild rice and Geng rice cultivar ‘Nipponbare’. Acta Agron Sin, 2019,45:316-321 (in Chinese with English abstract).
[27] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[28] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res, 2010,20:1297-1303.
[29] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105 pmid: 23289725
[30] Liu J H, Shen J Q, Xu Y, Li X H, Xiao J H, Xiong L Z. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016,67:5785-5798.
doi: 10.1093/jxb/erw344 pmid: 27638689
[31] 王仁晓, 李培金, 陈红旗, 闵绍楷, 李家洋, 朱旭东. 水稻顶节间长度控制基因(EUI1)的精细定位. 遗传学报, 2005,32:955-959.
Wang R X, Li P J, Chen H Q, Yan S K, Li J Y, Zhu X D. Fine localization of rice EUI1 gene controlling elongation of the uppermost internode. Acta Genet Sin, 2005,32:955-959 (in Chinese with English abstract).
[32] Zhang Y Y, Zhu Y Y, Peng Y, Yan D W, Li Q, Wang J J, Wang L Y, He Z H. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res, 2008,18:412-421.
doi: 10.1038/cr.2008.28 pmid: 18268540
[33] Zha X J, Luo X J, Qian X Y, He G M, Yang M F, Li Y, Yang J S. Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J, 2009,7:611-620.
doi: 10.1111/j.1467-7652.2009.00428.x pmid: 19619185
[34] Moncada P, Martínez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R,. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001,102:41-52.
[35] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493.
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[36] Suh J P, Ahn S N, Cho Y C, Kang K H, Choi I S, Kim Y G, Suh H S, Hwang H G. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed, 2005,37:214-220.
[37] Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated Brassinosteroid responses. Nat Plants, 2015,2:15195.
doi: 10.1038/nplants.2015.195 pmid: 27250747
[38] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015,2:15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[39] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
doi: 10.1111/jipb.12473
[40] Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A.R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol, 2017,15:28.
doi: 10.1186/s12915-017-0365-7 pmid: 28385155
[41] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
doi: 10.1073/pnas.1219776110 pmid: 23236132
[42] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888.
[1] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[2] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[3] Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484.
[4] Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN. Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6 [J]. Acta Agronomica Sinica, 2018, 44(05): 706-715.
[5] ZHANG Ling,LI Xiao-Nan,WANG Wei,YANG Sheng-Long,LI Qing,WANG Jia-Yu. Analysis of QTLs for Plant Type Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(12): 2128-2135.
[6] WU Ya-Hui,TAO Xing-Xing,XIAO Wu-Ming,GUO Tao,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang. Dissection of QTLs for Panicle Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(02): 214-221.
[7] CHEN Feng,LI Xiang-Nan,CAO Ying-Ying,SUN Jian-Xi,ZHANG Fu-Yan,DONG Zhong-Dong,CUI Dang-Qun. Analysis of Association of puroindoline b-2 Alleles with Yield-Related Traits in Bread Wheat [J]. Acta Agron Sin, 2014, 40(01): 17-21.
[8] ZHANG Guo-Hua1,GAO Ming-Gang,ZHANG Gui-Zhi,SUN Jin-Jie,JIN Xue-Mei,WANG Chun-Yang,ZHAO Yan,LI Si-Shen. Association Analysis of Yield Traits with Molecular Markers in Huang-Huai River Valley Winter Wheat Region, China [J]. Acta Agron Sin, 2013, 39(07): 1187-1199.
[9] FAN Dong-Mei,MA Zhan-Zhou,LIU Chun-Yan,YANG Zhe,ZENG Qing-Li,XIN Da-Wei,JIANG Hong-Wei,QIU Peng-Cheng,CHEN Qing-Shan,HU Guo-Hua. Analysis of Related Interactions and Mapping of QTLs for Seed Weight per Plant in Soybean in Different Years [J]. Acta Agron Sin, 2013, 39(06): 1021-1029.
[10] ZHANG Wei-Qiang,KU Li-Xia,ZHANG Jun,HAN Zan-Ping,CHEN Yan-Hui. QTL Analysis of Kernel Ratio, Kernel Depth and 100-Kernel Weight in Maize (Zea mays L.) [J]. Acta Agron Sin, 2013, 39(03): 455-463.
[11] ZHAO Fang-Ming,ZHANG Gui-Quan,ZENG Rui-Zhen,YANG Zheng-Lin,LING Ying-Hua,SANG Xian-Chun,HE Guang-Hua. Epistatic and Additive Effects of QTL for Yield-Related Traits Using Single Segment Substitution Lines in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2012, 38(11): 2007-2014.
[12] DING An-Ming, LI Jun, CUI Fa, ZHAO Chun-Hua, MA Hang-Yun, WANG Hong-Gang. QTL Mapping for Yield Related Traits Using Two Associated RIL Populations of Wheat [J]. Acta Agron Sin, 2011, 37(09): 1511-1524.
[13] FENG Yue, ZAI Rong-Rong, CAO Li-Yong, LIN Ze-Chuan, WEI Xin-Hua, CHENG Shi-Hua. QTL Analysis for Plant Height and Heading Date in Rice under Two Nitrogen Levels [J]. Acta Agron Sin, 2011, 37(09): 1525-1532.
[14] HU Xia, SHI Yu-Min, JIA Qian, XU Qin, WANG Yun, CHEN Kai, SUN Yong, ZHU Lian-Hua, XU Jian-Long, LI Zhi-Kang. Analyses of QTLs for Rice Panicle and Milling Quality Traits and Their Interaction with Environment [J]. Acta Agron Sin, 2011, 37(07): 1175-1185.
[15] PENG Bo, WANG Yang, LI Yong-Xiang, LIU Cheng, ZHANG Yan, LIU Zhi-Zhai, TAN Wei-Wei, WANG Di, SUN Bao-Cheng, DAN Yun-Su, SONG Yan-Chun, WANG Tian-Yu, LI Yu. Correlation Analysis and Conditional QTL Analysis of Grain Yield and Yield Components in Maize [J]. Acta Agron Sin, 2010, 36(10): 1624-1633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!