Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1391-1401.doi: 10.3724/SP.J.1006.2021.02054
• RESEARCH NOTES • Previous Articles Next Articles
LUO Lan1, LEI Li-Xia1, LIU Jin2,3, ZHANG Rui-Hua4, JIN Gui-Xiu4, CUI Di2, LI Mao-Mao3, MA Xiao-Ding2,*(), ZHAO Zheng-Wu1,*(), HAN Long-Zhi2,*()
[1] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019,49:1185-1212. |
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci Sin (Vitae), 2019,49:1185-1212 (in Chinese). | |
[2] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018,40:841-857. |
Wu B, Hu W, Xing Y Z. The history and prospect of rice genetic breeding in China. Hereditas, 2018,40:841-857 (in Chinese with English abstract). | |
[3] |
Yan S, Zou G H, Li S J, Wang H, Liu H Q, Zhai G W, Guo P, Song H M, Yan C J, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet, 2011,123:1173-1181.
doi: 10.1007/s00122-011-1657-x pmid: 21805338 |
[4] |
Monna L, Kitazawa N, Yoshino R, Lisa M, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564 |
[5] |
Spielmeyer W, Ellis M H, Chandler P M. Semidwarf ( sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002,99:9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[6] |
Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001 |
[7] |
Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCF D3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013,504:406-410.
doi: 10.1038/nature12878 pmid: 24336215 |
[8] |
Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H.E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature, 2013,504:401-405.
doi: 10.1038/nature12870 pmid: 24336200 |
[9] |
Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005,46:79-86.
doi: 10.1093/pcp/pci022 pmid: 15659436 |
[10] |
Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice ( Oryza sativa L.). Planta, 2005,222:604-612.
doi: 10.1007/s00425-005-0007-0 pmid: 16021500 |
[11] |
Huang X, Qian Q, Liu Z, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410 |
[12] |
Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, R. Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[13] | Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386. |
[14] |
Jin J, Hua L, Zhu Z, Tan L B, Zhao X H, Zhang W F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gua P, Xie D X, Sun C Q. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016,28:2453-2463.
doi: 10.1105/tpc.16.00379 pmid: 27634315 |
[15] |
Huo X, Wu S, Zhu Z, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783 |
[16] |
Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
doi: 10.1007/s00122-008-0913-1 pmid: 19020856 |
[17] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637 |
[18] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[19] |
Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977 pmid: 22019783 |
[20] |
Wang S K, Wu K, Yuan Q B, Liu X, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225 |
[21] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619 |
[22] |
Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018,9:1240.
doi: 10.1038/s41467-018-03616-y pmid: 29588443 |
[23] |
Ma X D, Han B, Tang J H, Zhang J N, Cui D, Geng L Y, Zhou H Y, Li M M, Han L Z. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufifipogon Griff) in the background of the japonica rice cultivar Nipponbare(Oryza sativa L.). Plant Physiol Biochem, 2019,144:274-282.
doi: 10.1016/j.plaphy.2019.09.041 pmid: 31593900 |
[24] | 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018,44:1477-1484. |
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract). | |
[25] |
Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice ( Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006,88:93-104.
doi: 10.1017/S0016672306008408 pmid: 17125584 |
[26] | 马小定, 唐江红, 张佳妮, 崔迪, 李慧, 黎毛毛, 韩龙植. 东乡野生稻与日本晴多态性标记的开发. 作物学报, 2019,45:316-321. |
Ma X D, Tang J H, Zhang J N, Cui D, Li H, Li M M, Han L Z. Development of molecular markers polymorphic between Dongxiang wild rice and Geng rice cultivar ‘Nipponbare’. Acta Agron Sin, 2019,45:316-321 (in Chinese with English abstract). | |
[27] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[28] | McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res, 2010,20:1297-1303. |
[29] |
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105 pmid: 23289725 |
[30] |
Liu J H, Shen J Q, Xu Y, Li X H, Xiao J H, Xiong L Z. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016,67:5785-5798.
doi: 10.1093/jxb/erw344 pmid: 27638689 |
[31] | 王仁晓, 李培金, 陈红旗, 闵绍楷, 李家洋, 朱旭东. 水稻顶节间长度控制基因(EUI1)的精细定位. 遗传学报, 2005,32:955-959. |
Wang R X, Li P J, Chen H Q, Yan S K, Li J Y, Zhu X D. Fine localization of rice EUI1 gene controlling elongation of the uppermost internode. Acta Genet Sin, 2005,32:955-959 (in Chinese with English abstract). | |
[32] |
Zhang Y Y, Zhu Y Y, Peng Y, Yan D W, Li Q, Wang J J, Wang L Y, He Z H. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res, 2008,18:412-421.
doi: 10.1038/cr.2008.28 pmid: 18268540 |
[33] |
Zha X J, Luo X J, Qian X Y, He G M, Yang M F, Li Y, Yang J S. Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J, 2009,7:611-620.
doi: 10.1111/j.1467-7652.2009.00428.x pmid: 19619185 |
[34] | Moncada P, Martínez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R,. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001,102:41-52. |
[35] |
Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493.
doi: 10.1007/s00122-003-1270-8 pmid: 12736777 |
[36] | Suh J P, Ahn S N, Cho Y C, Kang K H, Choi I S, Kim Y G, Suh H S, Hwang H G. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed, 2005,37:214-220. |
[37] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated Brassinosteroid responses. Nat Plants, 2015,2:15195.
doi: 10.1038/nplants.2015.195 pmid: 27250747 |
[38] |
Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015,2:15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749 |
[39] |
Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
doi: 10.1111/jipb.12473 |
[40] |
Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A.R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol, 2017,15:28.
doi: 10.1186/s12915-017-0365-7 pmid: 28385155 |
[41] |
Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
doi: 10.1073/pnas.1219776110 pmid: 23236132 |
[42] | Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888. |
[1] | MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007. |
[2] | WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525. |
[3] | Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484. |
[4] | Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN. Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6 [J]. Acta Agronomica Sinica, 2018, 44(05): 706-715. |
[5] | ZHANG Ling,LI Xiao-Nan,WANG Wei,YANG Sheng-Long,LI Qing,WANG Jia-Yu. Analysis of QTLs for Plant Type Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(12): 2128-2135. |
[6] | WU Ya-Hui,TAO Xing-Xing,XIAO Wu-Ming,GUO Tao,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang. Dissection of QTLs for Panicle Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(02): 214-221. |
[7] | CHEN Feng,LI Xiang-Nan,CAO Ying-Ying,SUN Jian-Xi,ZHANG Fu-Yan,DONG Zhong-Dong,CUI Dang-Qun. Analysis of Association of puroindoline b-2 Alleles with Yield-Related Traits in Bread Wheat [J]. Acta Agron Sin, 2014, 40(01): 17-21. |
[8] | ZHANG Guo-Hua1,GAO Ming-Gang,ZHANG Gui-Zhi,SUN Jin-Jie,JIN Xue-Mei,WANG Chun-Yang,ZHAO Yan,LI Si-Shen. Association Analysis of Yield Traits with Molecular Markers in Huang-Huai River Valley Winter Wheat Region, China [J]. Acta Agron Sin, 2013, 39(07): 1187-1199. |
[9] | FAN Dong-Mei,MA Zhan-Zhou,LIU Chun-Yan,YANG Zhe,ZENG Qing-Li,XIN Da-Wei,JIANG Hong-Wei,QIU Peng-Cheng,CHEN Qing-Shan,HU Guo-Hua. Analysis of Related Interactions and Mapping of QTLs for Seed Weight per Plant in Soybean in Different Years [J]. Acta Agron Sin, 2013, 39(06): 1021-1029. |
[10] | ZHANG Wei-Qiang,KU Li-Xia,ZHANG Jun,HAN Zan-Ping,CHEN Yan-Hui. QTL Analysis of Kernel Ratio, Kernel Depth and 100-Kernel Weight in Maize (Zea mays L.) [J]. Acta Agron Sin, 2013, 39(03): 455-463. |
[11] | ZHAO Fang-Ming,ZHANG Gui-Quan,ZENG Rui-Zhen,YANG Zheng-Lin,LING Ying-Hua,SANG Xian-Chun,HE Guang-Hua. Epistatic and Additive Effects of QTL for Yield-Related Traits Using Single Segment Substitution Lines in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2012, 38(11): 2007-2014. |
[12] | DING An-Ming, LI Jun, CUI Fa, ZHAO Chun-Hua, MA Hang-Yun, WANG Hong-Gang. QTL Mapping for Yield Related Traits Using Two Associated RIL Populations of Wheat [J]. Acta Agron Sin, 2011, 37(09): 1511-1524. |
[13] | FENG Yue, ZAI Rong-Rong, CAO Li-Yong, LIN Ze-Chuan, WEI Xin-Hua, CHENG Shi-Hua. QTL Analysis for Plant Height and Heading Date in Rice under Two Nitrogen Levels [J]. Acta Agron Sin, 2011, 37(09): 1525-1532. |
[14] | HU Xia, SHI Yu-Min, JIA Qian, XU Qin, WANG Yun, CHEN Kai, SUN Yong, ZHU Lian-Hua, XU Jian-Long, LI Zhi-Kang. Analyses of QTLs for Rice Panicle and Milling Quality Traits and Their Interaction with Environment [J]. Acta Agron Sin, 2011, 37(07): 1175-1185. |
[15] | PENG Bo, WANG Yang, LI Yong-Xiang, LIU Cheng, ZHANG Yan, LIU Zhi-Zhai, TAN Wei-Wei, WANG Di, SUN Bao-Cheng, DAN Yun-Su, SONG Yan-Chun, WANG Tian-Yu, LI Yu. Correlation Analysis and Conditional QTL Analysis of Grain Yield and Yield Components in Maize [J]. Acta Agron Sin, 2010, 36(10): 1624-1633. |
|