Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (07): 1175-1185.doi: 10.3724/SP.J.1006.2011.01175
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HU Xia1,SHI Yu-Min2,**,JIA Qian1,XU Qin1,WANG Yun1,CHEN Kai1,SUN Yong1,ZHU Ling-Hua1,XU Jian-Long1,*,LI Zhi-Kang1,3
[1]Peng S B, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559 [2]Juliano B O, Villareal C P. Grain Quality Evaluation of World Rice. Manila, Philippines: International Rice Research Institute, 1993. pp 35–60 [3]Jennings P R, Kauffman W R. Rice Improvement. Los Banos, Laguna, Philippines: International Rice Research Institute, 1979. pp 101–120 [4]Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice. In: Evenson R E, Herdt R W, Hossain M, eds. Rice Research in Asia: Progress and Priorities. CAB International, Wallingford: UK at the University Press, Cambridge, 1996. pp 59–71 [5]Takita T. Inheritance of grain size and the relationship between grain size and other characters in rice. Bull Nat Agric Res Cent, 1985, 3: 55–71 [6]Chauhan J S. Inheritance of grain weight, size and shape in rainfed rice (Oryza sativa L.). Indian J Agric Sci, 1998, 68: 9–12 [7]Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects: II. Genetic models for triploid endosperms. Theor Appl Genet, 1994, 89: 160–166 [8]Shi C H, Zhu J, Zang R C, Chen G L. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor Appl Genet, 1997, 95: 294–300 [9]Zhuang J Y, Lin H X, Qian G R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Thero Appl Genet, 1997, 95: 799–808 [10]Li Z K, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453–465 [11]Xu J L, Yu S B, Luo L J, Zhong D B, Sanchez A, Mei H W, Khush G S, Li Z K. Molecular dissection of the primary sink size in rice (Oryza sativa L.). Plant Breed, 2004, 123: 43–50 [12]Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171 [13]Zheng T Q, Xu J L, Li Z K, Zhai H Q, Wan J M. Genomic regions associated with milling quality and grain shape identified in a set of random introgression lines of rice (Oryza sativa L.). Plant Breed, 2007, 126: 158–163 [14]Ando T, Yamamoto T, Shimizu T, Ma X, Shomura A, Takeuchi Y, Lin S Y, Yano M. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet, 2008, 116: 881–890 [15]Xing Y-Z(邢永忠), Xu C-G(徐才国), Hua J-P(华金平), Tan Y-F(谈移芳). Analysis of QTL × Environment interaction for rice oanicle characteristics. Acta Genet Sin (遗传学报), 2001, 28(5): 439–446 (in Chinese with English abstract) [16]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441–1452 [17]SAS Institute. SAS/STAT User’s Guide. SAS Institute, Cary, 1996 [18]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264 [19]Wang Y, Kuroda E, Hirano M. Analysis of high yielding mechanism on rice varieties belonging to different plant types. Jpn J Crop Sci, 1997, 66: 293–299 [20]Xu Z-J(徐正进), Chen W-F(陈温福), Ma-D-R(马殿荣), Lü Y-N(吕英娜), Zhou S-Q(周淑清), Liu L-X(刘丽霞). Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin (作物学报), 2004, 30(9): 894–900 (in Chinese with English abstract) [21]Liu J-F(刘家富), Kui L-M(奎丽梅), Zhu Z-F(朱作峰), Tan L-B(谭禄宾), Wang G-J(王桂娟), Li Q-W(黎其万), Shu J-H(束继红), Sun C-Q(孙传清). Identification of QTLs associated with processing quality and appearance quality of common wild rice (Oryza rufipogon Griff.). J Agric Biotechnol (农业生物技术学报), 2007, 15(1): 90–96 (in Chinese with English abstract) [22]Yao G-X(姚国新), Li J-J(李金杰), Zhang Q(张强), Hu G-L(胡广隆), Chen C(陈超), Tang B(汤波), Zhang H-L(张洪亮), Li Z-C(李自超). Mapping QTLs for grain weight and shape using four sister near isogenic lines in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1310–1317 (in Chinese with English abstract) [23]Lu C, Shen L,Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomy traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996, 93: 1211–1217 [24]Li Z K, Pinson S R M, Stansel J W, Paterson A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed, 1998, 4: 419–426 [25]Mei H W, Xu J L, Li Z K, Yu X Q, Guo L B, Wang Y P, Ying C S, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 648–656 [26]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630 [27]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028 [28]Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374 [29]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127: 181–197 [30]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141–153 [31]Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136: 1447–1485 [32]Wang S C. Simulation Study on the Methods for Mapping Quantitative Trait Loci in Inbred Line Crosses. PhD Dissertation of Zhejiang University, 2000 [33]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386–1394 (in Chinese with English abstract) |
[1] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[2] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[3] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[4] | MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007. |
[5] | WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525. |
[6] | Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871. |
[7] | WANG Xu-Hong,LI Ming-Xiao,ZHANG Qun,JIN Feng,MA Xiu-Fang,JIANG Shu-Kun,XU Zheng-Jin,CHEN Wen-Fu. Effect of indica pedigree on yield and milling and appearance qualities in the offspring of indica/japonica cross [J]. Acta Agronomica Sinica, 2019, 45(4): 538-545. |
[8] | Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482. |
[9] | Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484. |
[10] | Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN. Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6 [J]. Acta Agronomica Sinica, 2018, 44(05): 706-715. |
[11] | Pin LYU, Hai-Feng YU, Jian-Hua HOU. QTL Mapping of Yield Traits Using Drought Tolerance Selected Backcrossing Introgression Lines in Sunflower [J]. Acta Agronomica Sinica, 2018, 44(03): 385-396. |
[12] | FANG Ya-Jie,ZHU Ya-Jun,WU Zhi-Chao,CHEN Kai,SHEN Cong-Cong,SHI Ying-Yao,XU Jian-Long. Genome-wide Association Study of Grain Appearance and Milling Quality in a Worldwide Collection of Indica Rice Germplasm [J]. Acta Agron Sin, 2018, 44(01): 32-42. |
[13] | ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602. |
[14] | SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621. |
[15] | GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160. |
|