Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (09): 1525-1532.doi: 10.3724/SP.J.1006.2011.01525
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FENG Yue,ZHAI Rong-Rong**,CAO Li-Yong,LIN Ze-Chuan,WEI Xing-Hua,CHENG Shi-Hua*
[1]Cassman K G, Peng S B, Olk D C, Ladha J K, Reichardt, Dobermann A, Singh U. Opportunities for increased nitrogen use efficiency from improved management in irrigated rice systems. Field Crops Res, 1998, 56: 7-39 [2]Vlek P L, Byrnes B H. The efficacy and loss of fertilizer N in lowland rice. Fert Res, 1986, 9: 131-147 [3]Fang P, Yu X M, Zhu R Q, Wu P. QTLs for rice leaf chlorophyll content under low N stress. Pedosphere, 2004, 14: 145-150 [4]Fang P(方萍), Tao Q-N(陶勤南), Wu P(吴平). QTLs underlying rice root to uptake NH4-N and NO3-N and rice N use efficiency at seedling stage. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(2): 159-165 (in Chinese with English abstract) [5]Fang P, Wu P. QTL × N-level interaction for plant height in rice (Oriza sativa L.). Plant Soil, 2001, 236: 237-242 [6]Xing Y-Z(邢永忠), Xu C-G(徐才国), Hua J-P(华金平), Tan Y-F(谈移芳), Sun X-L(孙新立). Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin (植物学报), 2001, 43(7): 721-726 (in Chinese with English abstract) [7]Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381 [8]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101 [9]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153 [10]Ma L-Y(马良勇), Bao J-S(包劲松), Li X-M(李西明), Zhu X-D(朱旭东), Ji Z-J(季芝娟), Xia Y-W(夏英武), Yang C-D(杨长登). Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci (中国水稻科学), 2009, 23(1): 1-11 (in Chinese with English abstract) [11]Yang D-W(杨德卫), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Ling J(林静), Chen T(陈涛), Zhu W-Y(朱文银), Wang C-L(王才林). Mapping and genetic analysis of quantitative trait loci for heading date with chromosome segment substitution lines in Oryza sativa. Chin Bull Bot (植物学报), 2010, 45(2): 189-197 (in Chinese with English abstract) [12]Feng Y, Cao L Y, Wu W M, Shen X H, Zhan X D, Zhai R R, Chen D B, Cheng S H. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed, 2010, 129: 652-656 [13]Shen X-H(沈希宏), Chen S-G(陈深广), Cao L-Y(曹立勇), Zhan X-D(占小登), Chen D-B(陈代波), Wu W-M(吴伟明), Cheng S-H(程式华). Construction of genetic linkage map based on a RIL population derived from super hybrid rice. Mol Plant Breed (分子植物育种), 2008, 6(5): 861-866 (in Chinese with English abstract) [14]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL Nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [15]Senaratne R, Ratnasinghe D S. Nitrogen fixation and beneficial effects of some grain legurnes and green-manure crops on rice. Boil Fert Soils, 1995, 19: 49-54 [16]Cao G-L(曹桂兰), Zhang Y-Y(张媛媛), Piao Z-Z(朴钟泽), Han L-Z(韩龙植). Evaluation of tolerance to low N-fertilizered level for rice type. J Plant Genet Resour (植物遗传资源学报), 2006, 7(3): 316-320 (in Chinese with English abstract) [17]Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z(高熙宗). Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 233-238 (in Chinese with English abstract) [18]Jiang L-G(江立庚), Dai T-B(戴廷波), Wei S-Q(韦善清), Gan X-Q(甘秀芹), Xu J-Y(徐建云), Cao W-X(曹卫星). Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin (植物生态学报), 2003, 27(4): 466-471 (in Chinese with English abstract) [19]Feng Y(冯跃), Cao L-Y(曹立勇), Wu W-M(吴伟明), Shen X-H(沈希宏), Zhan X-D(占小登), Zhai R-R(翟荣荣), Chen D-B(陈代波), Cheng S-H(程式华). Conparative analyses of QTLs for N-deficiency tolerance at different seedling stages in rice (Oryza sativa L.). Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(4): 880-886 (in Chinese with English abstract) [20]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808 [21]Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L.). Acta Genet Sin, 2001, 28(2): 135-143 [22]Li Z-F(李泽福), Zhou T(周彤), Zheng T-Q(郑天清), Luo L-G(罗林广), Xia J-F(夏加发), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of QTL × environment interactions for heading date of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 771-776 (in Chinese with English abstract) [23]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386-1394 (in Chinese with English abstract) [24]Lian X M, Xing Y Z, Yan H, Xu C G, Li X H, Zhang Q F. QTLs for nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112: 85-96 [25]Tong H H, Mei H W, Yu X Q, Xu X Y, Li M S, Zhang S Q, Luo L J. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genet Sin, 2006, 33(5): 458-467 [26]Fang P(方萍), Jing T-W(季天委), Tao Q-N(陶勤南), Wu P(吴平). Detecting QTLs for rice panicle length under two nitrogen levels. Chin J Rice Sci (中国水稻科学), 2002, 16(2): 176-178 (in Chinese with English abstract) [27]Liu W-J(刘文俊), Wang L-Q(王令强), He Y-Q(何予卿). Comparison of quantitative traits locis controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(2): 161-166 (in Chinese with English abstract) [28]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767 [29]Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xiong Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryza sativa). Theor Appl Genet, 2006, 113: 361-368 [30]Mu P(穆平), Huang C(黄超), Li J-X(李君霞), Liu L-F(刘立峰), Liu Y-J(刘弋菊), Li Z-C(李自超). Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency. Acta Agron Sin (作物学报), 2008, 34(7): 1137-1142 (in Chinese with English abstract) [31]Chen Q-Q(陈庆全), Yu S-B(余四斌), Li C-H(李春海), Mou T-M(牟同敏). Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin (中国农业科学), 2008, 41(2): 315-321 (in Chinese with English abstract) [32]Shen S-Q(沈圣泉), Zhuang J-Y(庄杰云), Shu X-L(舒小丽), Bao J-S(包劲松), Xia Y-W(夏英武). Analysis of QTLs mapping of tolerance to high Al3+ stress at seedling stage in rice. Acta Agron Sin (作物学报), 2006, 32(4): 479-483 (in Chinese with English abstract) [33]Zhao X-Q(赵秀琴), Xu J-L(徐建龙), Zhu L-H(朱苓华), Li Z-K(黎志康). QTL mapping of yield and root traits under irrigation and drought conditions using advanced backcross introgression lines in rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1887-1893 (in Chinese with English abstract) [34]Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004, 110: 1-11 [35]Shan Y H, Wang Y L, Pan X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.). Agric Sci China, 2005, 4(10): 721-727 [36]Cho Y, Jiang W Z, Chin J H, Piao Z Z, Cho Y G, Mccouch S R, Koh H J. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol Cell, 2007, 23: 72-79 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[3] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[4] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[5] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[6] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[7] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[8] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[11] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[12] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[13] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[14] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[15] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
|