Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (09): 1525-1532.doi: 10.3724/SP.J.1006.2011.01525

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis for Plant Height and Heading Date in Rice under Two Nitrogen Levels

FENG Yue,ZHAI Rong-Rong**,CAO Li-Yong,LIN Ze-Chuan,WEI Xing-Hua,CHENG Shi-Hua*   

  1. China National Rice Research Institute / National Center for Rice Improvement / State Key Laboratory of Rice Biology, Hangzhou 310006, China
  • Received:2010-12-31 Revised:2011-04-27 Online:2011-09-12 Published:2011-06-28
  • Contact: 程式华, E-mail: shcheng@mail.hz.zj.cn, Tel: 0571-63370188

Abstract: A recombinant inbred line (RIL), derived from a super hybrid rice cross of XQZB/R9308 and its genetic linkage map were used to identify QTLs through Windows QTL Cartographer 2.5 for plant height (PH) and heading date (HD) under low and normal nitrogen conditions in rice. Nine QTLs for PH and eight QTLs for HD were detected under two nitrogen levels, four QTLs for trait differences of PH and HD were detected between the two environments, explaining 5.68–18.40% of phenotypic variation. The pleiotropic QTLs influencing PH and HD were detected near RM5436 on chromosome 7 and in the interval RM5556–RM310 on chromosome 8, which showed high contribution of genetic effects and the position alleles were all originated from R9308. These QTLs are favorable for marker-assisted selection. One QTL for HD difference and one QTL for PH difference were detected in the interval RM5916–RM166 on chromosome 2 and in the interval RM2366–RM5767 on chromosome 8, which were considered to directly contribute to nitrogen use efficiency in rice.

Key words: Rice, Nitrogen level, Plant height, Heading date, QTL analysis

[1]Cassman K G, Peng S B, Olk D C, Ladha J K, Reichardt, Dobermann A, Singh U. Opportunities for increased nitrogen use efficiency from improved management in irrigated rice systems. Field Crops Res, 1998, 56: 7-39
[2]Vlek P L, Byrnes B H. The efficacy and loss of fertilizer N in lowland rice. Fert Res, 1986, 9: 131-147
[3]Fang P, Yu X M, Zhu R Q, Wu P. QTLs for rice leaf chlorophyll content under low N stress. Pedosphere, 2004, 14: 145-150
[4]Fang P(方萍), Tao Q-N(陶勤南), Wu P(吴平). QTLs underlying rice root to uptake NH4-N and NO3-N and rice N use efficiency at seedling stage. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(2): 159-165 (in Chinese with English abstract)
[5]Fang P, Wu P. QTL × N-level interaction for plant height in rice (Oriza sativa L.). Plant Soil, 2001, 236: 237-242
[6]Xing Y-Z(邢永忠), Xu C-G(徐才国), Hua J-P(华金平), Tan Y-F(谈移芳), Sun X-L(孙新立). Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin (植物学报), 2001, 43(7): 721-726 (in Chinese with English abstract)
[7]Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381
[8]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101
[9]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153
[10]Ma L-Y(马良勇), Bao J-S(包劲松), Li X-M(李西明), Zhu X-D(朱旭东), Ji Z-J(季芝娟), Xia Y-W(夏英武), Yang C-D(杨长登). Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci (中国水稻科学), 2009, 23(1): 1-11 (in Chinese with English abstract)
[11]Yang D-W(杨德卫), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Ling J(林静), Chen T(陈涛), Zhu W-Y(朱文银), Wang C-L(王才林). Mapping and genetic analysis of quantitative trait loci for heading date with chromosome segment substitution lines in Oryza sativa. Chin Bull Bot (植物学报), 2010, 45(2): 189-197 (in Chinese with English abstract)
[12]Feng Y, Cao L Y, Wu W M, Shen X H, Zhan X D, Zhai R R, Chen D B, Cheng S H. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed, 2010, 129: 652-656
[13]Shen X-H(沈希宏), Chen S-G(陈深广), Cao L-Y(曹立勇), Zhan X-D(占小登), Chen D-B(陈代波), Wu W-M(吴伟明), Cheng S-H(程式华). Construction of genetic linkage map based on a RIL population derived from super hybrid rice. Mol Plant Breed (分子植物育种), 2008, 6(5): 861-866 (in Chinese with English abstract)
[14]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL Nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[15]Senaratne R, Ratnasinghe D S. Nitrogen fixation and beneficial effects of some grain legurnes and green-manure crops on rice. Boil Fert Soils, 1995, 19: 49-54
[16]Cao G-L(曹桂兰), Zhang Y-Y(张媛媛), Piao Z-Z(朴钟泽), Han L-Z(韩龙植). Evaluation of tolerance to low N-fertilizered level for rice type. J Plant Genet Resour (植物遗传资源学报), 2006, 7(3): 316-320 (in Chinese with English abstract)
[17]Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z(高熙宗). Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 233-238 (in Chinese with English abstract)
[18]Jiang L-G(江立庚), Dai T-B(戴廷波), Wei S-Q(韦善清), Gan X-Q(甘秀芹), Xu J-Y(徐建云), Cao W-X(曹卫星). Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin (植物生态学报), 2003, 27(4): 466-471 (in Chinese with English abstract)
[19]Feng Y(冯跃), Cao L-Y(曹立勇), Wu W-M(吴伟明), Shen X-H(沈希宏), Zhan X-D(占小登), Zhai R-R(翟荣荣), Chen D-B(陈代波), Cheng S-H(程式华). Conparative analyses of QTLs for N-deficiency tolerance at different seedling stages in rice (Oryza sativa L.). Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(4): 880-886 (in Chinese with English abstract)
[20]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808
[21]Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L.). Acta Genet Sin, 2001, 28(2): 135-143
[22]Li Z-F(李泽福), Zhou T(周彤), Zheng T-Q(郑天清), Luo L-G(罗林广), Xia J-F(夏加发), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of QTL × environment interactions for heading date of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 771-776 (in Chinese with English abstract)
[23]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386-1394 (in Chinese with English abstract)
[24]Lian X M, Xing Y Z, Yan H, Xu C G, Li X H, Zhang Q F. QTLs for nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112: 85-96
[25]Tong H H, Mei H W, Yu X Q, Xu X Y, Li M S, Zhang S Q, Luo L J. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genet Sin, 2006, 33(5): 458-467
[26]Fang P(方萍), Jing T-W(季天委), Tao Q-N(陶勤南), Wu P(吴平). Detecting QTLs for rice panicle length under two nitrogen levels. Chin J Rice Sci (中国水稻科学), 2002, 16(2): 176-178 (in Chinese with English abstract)
[27]Liu W-J(刘文俊), Wang L-Q(王令强), He Y-Q(何予卿). Comparison of quantitative traits locis controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(2): 161-166 (in Chinese with English abstract)
[28]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
[29]Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xiong Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryza sativa). Theor Appl Genet, 2006, 113: 361-368
[30]Mu P(穆平), Huang C(黄超), Li J-X(李君霞), Liu L-F(刘立峰), Liu Y-J(刘弋菊), Li Z-C(李自超). Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency. Acta Agron Sin (作物学报), 2008, 34(7): 1137-1142 (in Chinese with English abstract)
[31]Chen Q-Q(陈庆全), Yu S-B(余四斌), Li C-H(李春海), Mou T-M(牟同敏). Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin (中国农业科学), 2008, 41(2): 315-321 (in Chinese with English abstract)
[32]Shen S-Q(沈圣泉), Zhuang J-Y(庄杰云), Shu X-L(舒小丽), Bao J-S(包劲松), Xia Y-W(夏英武). Analysis of QTLs mapping of tolerance to high Al3+ stress at seedling stage in rice. Acta Agron Sin (作物学报), 2006, 32(4): 479-483 (in Chinese with English abstract)
[33]Zhao X-Q(赵秀琴), Xu J-L(徐建龙), Zhu L-H(朱苓华), Li Z-K(黎志康). QTL mapping of yield and root traits under irrigation and drought conditions using advanced backcross introgression lines in rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1887-1893 (in Chinese with English abstract)
[34]Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004, 110: 1-11
[35]Shan Y H, Wang Y L, Pan X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.). Agric Sci China, 2005, 4(10): 721-727
[36]Cho Y, Jiang W Z, Chin J H, Piao Z Z, Cho Y G, Mccouch S R, Koh H J. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol Cell, 2007, 23: 72-79
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!