Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1787-1779.doi: 10.3724/SP.J.1006.2022.11030


Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain

ZHAO Ying-Xing1(), WANG Biao1(), LIU Qing1, SONG Tong1,2, ZHANG Xue-Peng1, CHEN Yuan-Quan1, SUI Peng1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Zibo Digital Agriculture Rural Development Center, Shandong 255000, Jinan, China
  • Received:2021-03-19 Accepted:2021-11-29 Online:2022-07-12 Published:2021-12-28
  • Contact: SUI Peng E-mail:zyx2020cau@163.com;wangbiao0312@outlook.com;suipeng@cau.edu.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2016YFD0300203);Open Project of Key Laboratory of Crop Water Demand and Regulation of Ministry of Agriculture and Rural Affairs(FIRI2021010101)


In order to solve the contradiction of water and grain about the traditional continuous winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) double-cropping system (W-M→W-M, CK) in the groundwater funnel area of Heilonggang Plain, the new rotation patterns with two-year cycle of “one-year traditional W-M + one-year other crops” were designed, trying to find out a water-saving and green stable cropping system suitable for this region. The field experiment was carried out in Wuqiao, Hebei province from October 2018 to September 2020. Setting spring maize→W-M (Ms→W-M), winter wheat→W-M (W→W-M), spring sweet potato (Dioscorea esculenta (Lour.) Burkill)→W-M (Psw→W-M), spring peanut (Arachis hypogaea Linn.)→W-M (As→W-M), winter wheat-summer peanut→W-M (W-A→W-M) and potato (Solanum tuberosum L.)-silage corn→W-M (P-C→W-M) six rotation patterns with two years cycle, we tried to analyze the characteristics of farmland water consumption. The results showed that: (1) Compared with CK, the annual water consumption of rotation patterns reduced by 3.1%-15.2%, expect W-A→W-M. The annual average water consumption of Ms→W-M, P-C→W-M, As→W-M and Psw→W-M decreased by 6.1%, 7.2%, 9.2%, and 15.2%, respectively, and the annual average net groundwater consumption of the four patterns also decreased by 9.0%, 10.3%, 16.2%, and 32.9%, respectively. (2) The combination of crops at different water consumption levels could achieve water complementary spatially. Winter wheat mainly consumed 0-160 cm soil moisture, which was reduced by 20% compared with sowing. Potato mainly consumed 0-100 cm soil moisture, which was reduced by 12% compared with sowing. Spring peanut mainly consumed 20-80 cm soil moisture, which was reduced by 4% compared with sowing. (3) Partial rotation patterns could reduce the demand for irrigation water and increase soil water storage. In 2019 rotation year, when the irrigation amount of Ms→W-M and As→W-M patterns were 145 mm and 175 mm less than CK, the soil water storage of 2 m increased by 27.2 mm and 12.6 mm compared with the start of rotation year, respectively. When the irrigation amount of W-M→W-M was 300 mm, the soil water storage of 2 m increased by 18.4 mm compared with the start of rotation year. (4) Partial rotation patterns had better economic water use efficiency (EWUE), which were 1.2-1.5 times of CK. The EWUE of As→W-M and W-A→W-M were 1.5 times and 1.2 times significantly higher than that of CK, respectively. Based on the characteristics of farmland water consumption and EWUE, the two-year rotation patterns of As→W-M, Psw→W-M, P-C→W-M, Ms→W-M could reduce the farmland water consumption, meanwhile, maintain and improve the economic water use efficiency, and could be implemented to partially replace the winter wheat and summer maize double-cropping system in Heilonggang Plain.

Key words: crop rotation, evapotranspiration, tension meter, groundwater, economic water use efficiency

Fig. 1

Monthly accumulative precipitation from October 2018 to September 2020, and the average monthly precipitation from 2010 to 2019 at Wuqiao Station"

Fig. 2

Whole growth period distribution of crops under different rotation patterns W-M→W-M: winter wheat-summer maize→winter wheat-summer maize; Ms→W-M: spring maize→winter wheat-summer maize; W→W-M: winter wheat→winter wheat-summer maize; Psw→W-M: spring sweet potato→winter wheat-summer maize; As→W-M: spring peanut→winter wheat-summer maize; W-A→W-M: winter wheat-summer peanut→winter wheat-summer maize; P-C→W-M: potato-silage corn→winter wheat-summer maize. The grey part represents the fallow period"

Table 1

Field management measures of different crops"

Sowing date
Harvest date
施肥量Fertilizer rate (kg hm-2)
氮N 磷P2O5 钾K2O
2019 冬小麦 Winter wheat 2018-10-06 2019-06-09 225 225 112.5 225
夏玉米 Summer maize 2019-06-14 2019-09-29 75 180 103.5 112.5
春玉米 Spring maize 2019-05-21 2019-09-15 155 240 75 90
春甘薯 Spring sweet potato 2019-04-30 2019-10-06 80 54 138 225
春花生 Spring peanut 2019-05-16 2019-09-18 125 172 172.5 150
夏花生 Summer peanut 2019-06-14 2019-10-06 75 172 172.5 150
马铃薯 Potato 2019-03-11 2019-06-18 155 180 120 300
青贮玉米 Silage corn 2019-06-23 2019-09-28 75 180 103.5 112.5
2020 冬小麦 Winter wheat 2019-10-15 2020-06-09 225 225 112.5 225
夏玉米 Summer maize 2020-06-15 2020-09-24 120 180 103.5 112.5

Table 2

Distribution of the precipitation during the experimental years (Oct. 2018-Sep. 2020) of different rotation patterns (mm)"

Rotation pattern
Precipitation during
growth period
休闲期降雨量Precipitation during
fallow period
Total precipitation
2019 W-M→W-M 冬小麦 Winter wheat 79.2 0 79.2
夏玉米 Summer maize 432.2 10.1 442.3
Ms→W-M 春玉米 Spring maize 457.5 64.0 521.5
W→W-M 冬小麦 Winter wheat 79.2 442.3 521.5
Psw→W-M 春甘薯 Spring sweet potato 465.0 56.5 521.5
As→W-M 春花生 Spring peanut 457.5 64.0 521.5
W-A→W-M 冬小麦 Winter wheat 79.2 0 79.2
夏花生 Summer peanut 439.7 2.6 442.3
P-C→W-M 马铃薯 Potato 67.8 11.4 79.2
青贮玉米 Silage corn 432.2 10.1 442.3
2020 冬小麦 Winter wheat 147.7 0 147.7
夏玉米 Summer maize 239.8 0.7 240.5

Fig. 3

Net consumption of groundwater in different rotation patterns I: irrigation; DP: deep percolation; NCG: net consumption of groundwater. NCG=I-DP. Different lowercase letters indicate that there is significant difference at the level of 0.05 by LSD method."

Fig. 4

Soil moisure contents in 0-200 cm soil depth of different rotation patterns"

Fig. 5

Variation of 0-200 cm soil water storage in different rotation patterns Variation of soil water storage = End time - Start time, a positive value indicates an increase in water storage and a negative value indicates a decrease (P<0.05). Different lowercase letters indicate that there is significant difference at the level of 0.05 by LSD method."

Table 3

Water consumption and composition of different rotation patterns (mm)"

Rotation pattern
2018-2019 2019-2020 2018-2020年均2018-2020 Average
W-M→W-M 521.5 300.0 -18.4 a 92.6 ab 747.3 ab 388.2 345.0 -29.4 b 75.2 ab 687.4 b 454.9 322.5 -23.9 a 83.9 a 717.4 b
Ms→W-M 521.5 155.0 27.2 b 35.6 bc 613.7 d 388.2 345.0 -87.1 a 30.1 bc 790.1 a 454.9 250.0 -30.0 a 32.9 bc 701.9 b
W→W-M 521.5 225.0 4.4 ab 34.3 bc 707.8 bc 388.2 345.0 -44.2 b 36.3 bc 741.1 ab 454.9 285.0 -19.9 a 35.3 bc 724.5 b
Psw→W-M 521.5 80.0 -2.4 ab 11.5 c 592.4 d 388.2 345.0 -35.6 b 93.1 a 675.6 b 454.9 212.5 -19.0 a 52.3 abc 634.0 e
As→W-M 521.5 125.0 12.6 ab 21.0 c 612.9 d 388.2 345.0 -60.4 ab 49.1 abc 744.5 ab 454.9 235.0 -23.9 a 35.1 bc 678.7 bc
W-A→W-M 521.5 300.0 -13.6 a 25.4 c 809.7 a 388.2 345.0 -35.2 b 26.3 bc 742.1 ab 454.9 322.5 -24.4 a 25.8 c 775.9 a
P-SC→W-M 521.5 230.0 -19.6 a 128.8 a 642.3 cd 388.2 345.0 -29.3 b 18.1 c 744.4 ab 454.9 287.5 -24.5 a 73.4 ab 693.4 b

Table 4

Economic water use efficiencies (EWUE) of different rotation patterns from 2018-2020"

Rotation pattern
2018-2019 2019-2020 2018-2020年均2018-2020 average
(Yuan hm-2)
(Yuan m-3)
(Yuan hm-2)
(Yuan m-3)
(Yuan hm-2)
(Yuan m-3)
W-M→W-M 21,402.1 b 747.3 ab 2.87 c 23,167.4 a 687.4 b 3.37 a 22,284.8 b 717.4 b 3.11 c
Ms→W-M 15,416.6 b 613.7 d 2.52 c 22,654.9 a 790.1 a 2.87 bc 19,035.8 b 701.9 b 2.72 c
W→W-M 6,789.4 c 707.8 bc 0.96 d 21,242.4 ab 741.1 ab 2.87 bc 14,015.9 c 724.5 b 1.94 d
Psw→W-M 16,478.1 b 592.4 d 2.78 c 22,445.0 a 675.6 b 3.34 ab 19,461.5 b 634.0 c 3.08 c
As→W-M 39,110.5 a 612.9 d 6.38 a 23,470.8 a 744.5 ab 3.16 ab 31,290.6 a 678.7 bc 4.61 a
W-A→W-M 36,890.7 a 809.7 a 4.56 b 23,115.3 a 742.1 ab 3.11 ab 30,003.0 a 775.9 a 3.87 b
P-C→W-M 20,783.8 b 642.3 cd 3.24 c 18,967.8 b 744.4 ab 2.55 c 19,875.8 b 693.4 b 2.87 c

Table S1

Crop yield of different rotation patterns from 2018 to 2020"

Rotation pattern
2018-2019 2019-2020
作物Crop 产量Yield (kg hm-2) 作物Crop 产量Yield (kg hm-2)
W-M→W-M 冬小麦 Winter wheat 6985 ± 594 冬小麦 Winter wheat 8947 ± 1150
夏玉米 Summer maize 11,118 ± 859 夏玉米 Summer maize 10,320 ± 137
Ms→W-M 春玉米 Spring maize 12,295 ± 451 冬小麦 Winter wheat 9243 ± 371
夏玉米 Summer maize 9673 ± 622
W→W-M 冬小麦 Winter wheat 7173 ± 813 冬小麦 Winter wheat 8763 ± 677
夏玉米 Summer maize 9546 ± 418
Psw→W-M 春甘薯 Spring sweet potato 33,576 ± 1529 冬小麦 Winter wheat 8585 ± 641
夏玉米 Summer maize 10,403 ± 375
As→W-M 春花生 Spring peanut 6487 ± 371 冬小麦 Winter wheat 9122 ± 500
夏玉米 Summer maize 10,254 ± 435
W-A→W-M 冬小麦 Winter wheat 7002 ± 708 冬小麦 Winter wheat 8804 ± 767
夏花生 Summer peanut 5252 ± 832 夏玉米 Summer maize 10,475 ± 463
P-SC→W-M 马铃薯 Potato 26,733 ± 5542 冬小麦 Winter wheat 8442 ± 482
青贮玉米 Silage maize 51,733 ± 3711 夏玉米 Summer maize 8766 ± 879
[1] 程亚男. 黑龙港地区水资源承载力评估与分析. 河北大学硕士学位论文,河北保定, 2019.
Cheng Y N. Analysis and Assessment of Water Resources Carrying Capacity in Heilonggang Region. MS Thesis of Hebei University, Baoding, Hebei, China, 2019. (in Chinese with English abstract)
[2] 尹宝重, 李海燕, 马燕会, 段玉波, 孙良忠, 甄文超. 黑龙港区春季减灌对不同小麦品种产量和水肥利用的影响. 江苏农业科学, 2015, 43(3): 63-66.
Yin B Z, Li H Y, Ma Y H, Duan Y B, Sun L Z, Zhen W C. Effect of spring irrigation reduction on yield and water and fertilizer utilization of different wheat varieties in Heilonggang Region. Jiangsu Agric Sci, 2015, 43(3): 63-66. (in Chinese)
[3] 郝彦珍. 黑龙港砂土区农用地下水资源合理利用试验研究. 石家庄经济学院硕士学位论文, 河北石家庄, 2012.
Hao Y Z. The Testing Research About Rational Use of Agricultural Groundwater Resources in Heilonggang Area. MS Thesis of Shijiazhuang University of Economics, Shijiazhuang, Hebei, China, 2012. (in Chinese with English abstract)
[4] 田北京. 基于玉米高生产力的华北平原不同轮作体系产量与水分利用综合评价. 中国农业大学博士学位论文, 北京, 2019.
Tian B J. Comprehensive Evaluation of Yield and Water Use of Different Rotation Systems Based on High Productivity of Maize in North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2019 (in Chinese with English abstract).
[5] Liang H, Qin W, Hu K, Tao H, Li B. Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agric Water Manage, 2019, 213: 732-741.
doi: 10.1016/j.agwat.2018.11.022
[6] Sun Q, Kröbel R, Müller T, Römheld V, Cui Z, Zhang F, Chen X. Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agric Water Manage, 2011, 98: 808-814.
doi: 10.1016/j.agwat.2010.12.007
[7] 张晓. 浅议河北省黑龙港流域节水农业发展. 河北水利, 2017, (11): 30.
Zhang X. Discussion on the development of water saving agriculture in Heilonggang basin of Hebei province. Hebei Water Resour, 2017, (11): 30. (in Chinese)
[8] 秦欣, 刘克, 周丽丽, 周顺利, 鲁来清, 王润政. 华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征. 中国农业科学, 2012, 45: 4014-4024.
Qin X, Liu K, Zhou L L, Zhou S L, Lu L Q, Wang R Z. Characteristics of annual water utilization in winter wheat-summer maize rotation system in North China Plain. Sci Agric Sin, 2012, 45: 4014-4024. (in Chinese with English abstract)
[9] Steward D R, Bruss P J, Yang X, Staggenborg S A, Welch S M, Apley M D. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc Natl Acad Sci USA, 2013, 110: E3477-E3486.
[10] Scanlon B R, Reedy R C, Gates J B, Gowda P H. Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agric Ecosyst Environ, 2010, 139: 700-713.
doi: 10.1016/j.agee.2010.10.017
[11] Castellazzi P, Martel R, Rivera A, Huang J, Pavlic G, Calderhead A I, Chaussard E, Garfias J, Salas J. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour Res, 2016, 52: 5985-6003.
doi: 10.1002/2015WR018211
[12] Aeschbach-Hertig W, Gleeson T. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci, 2012, 5: 853-861.
doi: 10.1038/ngeo1617
[13] Kong X, Zhang X, Lal R, Zhang F, Chen X, Niu Z, Han L, Song W. Groundwater depletion by agricultural intensification in China’s HHH Plains, since 1980s. Adv Agron, 2016, 135: 59-106.
[14] Yang X L, Chen Y Q, Steenhuis T S, Pacenka S, Gao W S, Ma L, Zhang M, Sui P. Mitigating groundwater depletion in north China Plain with cropping system that alternate deep and shallow rooted crops. Front Plant Sci, 2017, 8: 980.
doi: 10.3389/fpls.2017.00980
[15] Yang X L, Chen Y Q, Pacenka S, Steenhuis T S, Sui P. Managing food and bioenergy crops with declining groundwater levels in the North China Plain. Field Crops Res, 2019, 234: 1-14.
doi: 10.1016/j.fcr.2019.02.003
[16] 杨美赞. 黑龙港地区地下水灌溉管理现状研究. 河北农业大学硕士学位论文, 河北保定, 2018.
Yang M Z. Current Situation Research on Groundwater Irrigation Management in Heilonggang Region. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2018. (in Chinese with English abstract)
[17] 张发旺, 程彦培, 王滨, 陈立, 郭晓晓. 黑龙港地区水土资源空间分布与农业种植结构优化研究. 安徽农业科学, 2011, 39: 13356-13359.
Zhang F W, Cheng Y P, Wang B, Chen L, Guo X X. Study on water-soil resources distribution and agricultural planting structure optimization in Heilonggang Area. J Anhui Agric Sci, 2011, 39: 13356-13359. (in Chinese with English abstract)
[18] 王滨, 张发旺, 程彦培, 陈立. 基于农业种植结构的黑龙港地区水资源供需平衡分析. 水土保持通报, 2012, 32(2): 182-185.
Wang B, Zhang F W, Cheng Y P, Chen L. Supplies and demands balance of water resource in consideration of agricultural cultivation structure in Heilonggang district. Bull Soil Water Conserv, 2012, 32(2): 182-185. (in Chinese with English abstract)
[19] 黄国勤, 赵其国. 中国典型地区轮作休耕模式与发展策略. 土壤学报, 2018, 55: 283-292.
Huang G Q, Zhao Q G. Rotation fallow pattern and development strategy in typical areas of China. Acta Pedol Sin, 2018, 55: 283-292. (in Chinese with English abstract)
[20] 杨晓琳. 华北平原不同轮作模式节水减排效果评价. 中国农业大学博士学位论文,北京, 2015.
Yang X L. Effects of Diversified Rotation Patterns on Conserving Groundwater Resource and Lowering Carbon Footprint in the North China Plain. PhD Dissertation of China Agricultural University,Beijing, China, 2015. (in Chinese with English abstract)
[21] Gao B, Ju X T, Meng Q F, Cui Z L, Christie P, Chen X P, Zhang F S. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use. Agric Ecosyst Environ, 2015, 203: 46-54.
doi: 10.1016/j.agee.2015.01.020
[22] 郭步庆, 陶洪斌, 王璞, Heike K, Wilhelm C. 华北平原不同粮作模式下作物水分利用. 中国农业大学学报, 2013, 18(1): 53-60.
Guo B Q, Tao H B, Wang P, Heike K, Wilhelm C. Water utilization of different cropping production systems in North China Plain. J China Agric Univ, 2013, 18(1): 53-60. (in Chinese with English abstract)
[23] 马丽, 隋鹏, 高旺盛, 李丰蓉. 太行山前平原不同种植模式水资源利用效率分析. 干旱地区农业研究, 2008, 26(2): 177-183.
Ma L, Sui P, Gao W S, Li F R. Analysis on water resources utilization efficiency of different planting patterns in Taihang Piedmont Plain. Agric Res Arid Areas, 2008, 26(2): 177-183. (in Chinese with English abstract)
[24] 吴天龙, 马丽, 隋鹏, 高旺盛, 陈源泉. 太行山前平原不同轮作模式水资源利用效率评价. 中国农学通报, 2008, 24(5): 351-356.
Wu T L, Ma L, Sui P, Gao W S, Chen Y Q. Dynamic soil water variation and WUE of different cropping patterns in the Piedmont of Mt. Taihang. Chin Agric Sci Bull, 2008, 24(5): 351-356 (in Chinese with English abstract).
[25] 郑媛媛, 陈宗培, 王贵彦. 海河平原小麦-玉米不同种植制度节水特性分析. 干旱地区农业研究, 2019, 37(5): 9-15.
Zheng Y Y, Chen Z P, Wang G Y. Analysis on the water-saving characteristics of winter wheat and summer maize cropping system on Haihe Plain. Agric Res Arid Areas, 2019, 37(5): 9-15. (in Chinese with English abstract)
[26] 胡志桥, 田霄鸿, 张久东, 包兴国, 马忠明. 石羊河流域节水高产高效轮作模式研究. 中国生态农业学报, 2011, 19: 561-567.
Hu Z Q, Tian X H, Zhang J D, Bao X G, Ma Z M. High efficiency production and water-saving crop rotation systems in Shiyang River Area. Chin J Eco-Agric, 2011, 19: 561-567. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2011.00561
[27] 刘渊博. 饲用油菜-冬小麦轮作系统生产力及资源利用效率研究. 兰州大学硕士学位论文, 甘肃兰州, 2014.
Liu Y B. Productivity and Resource Utilization in a Forage Canola-Winter Wheat Rotation System. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2014. (in Chinese with English abstract)
[28] Kröbel R, Lemke R, Campbell C A, Zentner R, McConkey B, Steppuhn H, De Jong R, Wang H. Water use efficiency of spring wheat in the semi-arid Canadian prairies: effect of legume green manure, type of spring wheat, and cropping frequency. Can J Soil Sci, 2014, 94: 223-235.
doi: 10.4141/cjss2013-016
[29] Yang X L, Chen Y Q, Pacenka S, Gao W S, Ma L, Wang G Y, Yan P, Sui P, Steenhuis T S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J Hydrol, 2015, 522: 428-438.
doi: 10.1016/j.jhydrol.2015.01.010
[30] He A B, Yuan B, Jin Z Q, Man J Q, Peng S B, Zhang L, Liu H Y, Nie L X. Comparative study on annual yield, water consumption, irrigation water use efficiency and economic benefits of different rice-oilseed rape rotation systems in central China. Agric Water Manage, 2021, 247: 106741.
doi: 10.1016/j.agwat.2021.106741
[31] Genuchten V T M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 1980, 44: 892-898.
doi: 10.2136/sssaj1980.03615995004400050002x
[32] 孙宏勇, 刘小京, 巨兆强, 郭凯. 不同种植模式下水资源利用效率的探讨. 灌溉排水学报, 2015, 34(2): 45-48.
Sun H Y, Liu X J, Ju Z Q, Guo K. Discussion on utilization efficiency of water resources under different planting patterns. J Irrig Drain, 2015, 34(2): 45-48. (in Chinese)
[33] 刘沛松, 李军, 贾志宽, 于亚军, 刘世新. 宁南旱区苜蓿草地土壤水分消耗规律及粮草轮作土壤水分恢复效应研究. 中国农学通报, 2005, 21(9): 270-274.
Liu P S, Li J, Jia Z K, Yu Y J, Liu S X. Soil water study of alfalfa grass water consume disciplinarian and resume affection while grain-grass rotation in the arid regions of Southern Ningxia. Chin Agric Sci Bull, 2005, 21(9): 270-274 (in Chinese with English abstract).
[34] Fageria N K. The Role of Plant Roots in Crop Production. Boca Raton, US: CRC Press, 2012.
[35] Mi G, Chen F, Yuan L, Zhang F. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv Agron, 2016, 139: 73-97.
[36] Semchenko M, Hutchings M J, John E A. Challenging the tragedy of the commons in root competition: confounding effects of neighbor presence and substrate volume. J Ecol, 2007, 95: 252-260.
doi: 10.1111/j.1365-2745.2007.01210.x
[37] Cai X, Wallington K, Shafiee-Jood M, Marston L. Understanding and managing the food-energy-water nexus- opportunities for water resources research. Adv Water Resour, 2018, 111: 259-273.
doi: 10.1016/j.advwatres.2017.11.014
[38] D’Odorico P, Davis K F, Rosa L, Carr J A, Chiarelli D, Dell’Angelo J, Gephart J, MacDonald G K, Seekell D A, Suweis S, Rulli M C. The global food-energy-water nexus. Rev Geophys, 2018, 56: 456-531.
doi: 10.1029/2017RG000591
[39] Van Duivenbooden N, Pala M, Studer C, Bielders C L, Beukes D J. Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review. NJAS-Wageningen J Life Sci, 2000, 48: 213-236.
doi: 10.1016/S1573-5214(00)80015-9
[1] LI Jie,WU Yang-Huan,CHEN Rui,YANG Ping,CHAI Shun-Xi,CUI Jin,MA Fu-Yu. Measurement of Evapotranspiration for Drip-IrrigatedWinter WheatUsing Large Weighing Lysimeter in Northern Xinjiang [J]. Acta Agron Sin, 2016, 42(07): 1058-1066.
[2] GUO Jia-Xuan,MEI Xu-Rong,LI Qiao-Zhen,YAN Chang-Rong,LI Yu-Zhong. Variation of Priestley-Taylor Model Parameter in Rain Fed Spring Maize Field [J]. Acta Agron Sin, 2013, 39(06): 1105-1110.
[3] Kang Shaozhong;Zhang Fucang; Liang Yinli; Ma Qinglin; Hu Xiaotao. Effects of Soil Water and the Atmospheric COZ Concentration Increase on Evapotranspiration,Photosynthesis,Growth of Wheat,Maize and Cotton [J]. Acta Agron Sin, 1999, 25(01): 55-63.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .