Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1799-1807.doi: 10.3724/SP.J.1006.2023.22041

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A method of nuclei extraction and library construction for chromatin transposase accessibility sequencing in gramineous plants

QI Ze-Wen1,2(), HUANG Ming-Han2, ZHANG Jia-Hui2, LIU Yi2, HAN Lie-Bao1,*(), HE Hang2,*()   

  1. 1College of Grassland Science, Beijing Forestry University, Beijing 10083, China
    2School of Advanced Agricultural Sciences, Peking University, Beijing 10081, China
  • Received:2022-07-01 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-01
  • Contact: *E-mail: hanliebao@163.com; E-mail: hehang@pku.edu.cn E-mail:qizewen0404@163.com;hanliebao@163.com;hehang@pku.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(31971770)

Abstract:

In order to establish a system for extracting nuclei and constructing library of assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) in gramineous plants, the leaves and roots of rice, wheat, and zoysia were used as the research materials. The best method to extract nuclei was determined by designing control variable experiments: grinding samples with liquid nitrogen, selecting 1200×g centrifugal stress for extracting initial nuclei, using ORB buffer twice and SCB buffer to purify nuclei. It was suggested that the extracted nuclei were suitable for the sequencing of transposase accessible chromatin and high-quality sequencing data could be obtained by testing. In summary, an integrated system suitable for gramineous plants to extract nuclei had been established. This method will lay a foundation for obtaining the information of chromatin accessible regions and the regulation of gene expression in gramineous plants.

Key words: gramineae, chromatin accessibility, ATAC-seq, nuclei

Fig. 1

Nuclei under optical microscope A: the nuclei extracted by using the leaves of fresh rice (Bright blue dots are nuclei); B: the nuclei extracted by using the leaves of rice with liquid nitrogen (Bright blue dots are nuclei)."

Fig. 2

Number of the nuclei extracted under different centrifugal forces A: the nuclei extracted by using rice tissues; B: the nuclei extracted by using wheat tissues; C: the nuclei extracted by using zoysia tissues."

Fig. 3

Nucleus extracted by different purification methods A: the nuclei purified with 20 μL ORB buffer; B: the nuclei purified with 10 mL ORB buffer; C: the nuclei purified with ORB buffer twice; D: the detection of broken nuclei with trypan blue."

Fig. 4

Numbers and the distribution patterns of chromatin accessible regions A: the distribution patterns of chromatin accessible regions in wheat; B: the distribution patterns of chromatin accessible regions in rice; C: the distribution patterns of chromatin accessible regions in zoysia; D: Wayne diagram of chromatin accessible regions in wheat; E: Wayne diagram of chromatin accessible regions in rice; F: the number of chromatin accessible regions."

[1] Tolsma T O, Hansen J C. Post-translational modifications and chromatin dynamics. Essays Biochem, 2019, 63: 89-96.
doi: 10.1042/EBC20180067 pmid: 31015385
[2] 谢秋, 李才华, 王滔, 孙正怡, 郁琦, 张霆. 利用染色质开放性测序技术探讨叶酸缺乏对胚胎干细胞基因组结构变化调控影响. 生殖医学杂志, 2019, 28: 673-678.
Xie Q, Li C H, Wang T, Sun Z Y, Yu Q, Zhang T. Exploring effect of folic acid deficiency on the regulation of genome structure changes in embryonic stem cells by using open chromatin sequencing. J Reprod Med, 2019, 63: 89-96. (in Chinese with English abstract)
[3] 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展. 遗传, 2020, 42: 333-346.
Wu J, Quan J P, Ye Y, Wu Z F, Yang J, Yang M, Zheng E Q. Advances in assay for transposase-accessible chromatin with high-throughput sequencing. Hereditas, 2020, 42: 333-346. (in Chinese with English abstract)
[4] 许兰, 任立成. 染色质可及性分析的研究进展. 生物化学与生物物理进展, 2020, 49: 1462-1470.
Xu L Ren L C. Research progress of chromatin accessibility analysis. Prog Biochem Biophys, 2020, 49: 1462-1470.
[5] 廖彬, 杨佳怡, 陈桂芳, 高运华, 王晶, 任歌. 染色质转座酶可及性测序研究与数据分析. 中国测试, 2020, 46(10): 4-10.
Liao B, Yang J Y, Chen G F, Gao Y H, Wang J, Ren G. Research progress and data analysis of assay for transposase-accessible chromatin with high-throughput sequencing. Chin Measur Test Technol, 2020, 46(10): 4-10. (in Chinese with English abstract)
[6] Giresi P G, Kim J, McDaniell R M, Iyer V R, Lieb J D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res, 2007, 17: 877-885.
pmid: 17179217
[7] Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K. Dynamic regulation of nucleosome positioning in the human genome. Cell, 2008, 132: 887-898.
doi: 10.1016/j.cell.2008.02.022 pmid: 18329373
[8] Sing L, Craford G E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc, 2010, (2): 5384. doi: 10.1101/pdb.prot5384.
doi: 10.1101/pdb.prot5384
[9] Buenrostro J D, Giresi P G, Zaba L C, Chang H Y, Greenleaf W G. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 2013, 10: 1213-1218.
doi: 10.1038/nmeth.2688 pmid: 24097267
[10] Buenrostro J D, Wu B, Chang H Y, Greenleaf W G. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol, 2015, 109: 1-9.
[11] Yan F, Powell D R, Curtis D J, Wong N C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol, 2020, 21: 1-16.
doi: 10.1186/s13059-019-1906-x
[12] Ackermann A M, Wang Z P, Schug J, Naji A, Kaestner K H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab, 2016, 5: 233-244.
doi: S2212-8778(16)00003-X pmid: 26977395
[13] Wang Y Q, Zhang X M, Song Q, Hou Y L, Liu J, Sun Y, Wang P C. Characterization of the chromatin accessibility in an Alzheimer’s disease (AD) mouse model. Alzheimers Res Ther, 2020, 12: 29.
doi: 10.1186/s13195-020-00598-2
[14] 王祥, 殷伟, 唐云雯, 殷雪, 于蕾, 岳才军. 植物细胞核分离纯化的探讨. 科技创新与应用, 2014, (1): 37-38.
Wang X, Yin W, Tang Y W, Yin X, Yu L, Yue C J. Study on isolation and purification of plant nuclei. Technol Innovat Appl, 2014, (1): 37-38. (in Chinese)
[15] Lu F H, McKenzie N, Gardiner L J, Luo M C, Hall A, Bevan M W. Assay for Transposase-Accessible Chromatin (ATAC) Sequencing. 2019, https://dx.doi.org/10.17504/protocols.io.75whq7e.
[16] 刘鸿森.基于单细胞ATAC-seq技术的玉米花粉细胞核遗传重组的研究. 哈尔滨工业大学博士学位论文, 黑龙江哈尔滨, 2020.
Liu H S.Using Single Cell ATAC-seq Method to Analyze Recombination in Maize Pollen Nuclei. PhD Dissertation of Harbin Institute of Technology, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract)
[17] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 14-20.
[18] Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359.
doi: 10.1038/nmeth.1923 pmid: 22388286
[19] Rodesch G, Bracard S.In memoriam Professor Luc Picard (1937− 2021). Interv Neuroradiol, 2021, 27: 462-464.
doi: 10.1177/15910199211026156
[20] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[21] Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P. Integrative genomics viewer. Nat Biotechnol, 2011, 29: 24-26.
doi: 10.1038/nbt.1754 pmid: 21221095
[22] Zhao L, Lin X L, Yang Y M, Bie X M, Zhang H, Chen J C, Liu X M, Wang H, Jiang J F, Fu X D, Zhang X S, Xiao J. Chromatin reprogramming and transcriptional regulation orchestrate embryogenesis in hexaploidy wheat. BioRxiv, 2022, 477188. .
[23] Dong P F, Tu X Y, Chu P Y, Lü P T, Zhu N, Grierson D, Du B J, Li P, Zhong S. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant, 2017, 10: 1497-1509.
doi: S1674-2052(17)30339-8 pmid: 29175436
[24] Lee J H, Kim E W, Croteau D L, Bohr V R. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med, 2020, 52: 1466-1474.
doi: 10.1038/s12276-020-00497-4
[25] Ranzoni A M, Tangherloni A, Berest I, Riva S G, Myers B, Strzelecka P M, Xu J, Panada E, Mohorianu I, Zaugg J B, Cvejic A. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell, 2021, 28: 472-487.
doi: 10.1016/j.stem.2020.11.015 pmid: 33352111
[26] Liang D, Elwell A L, Aygün N, Krupa O, Wolter J M, Kyere F A, Lafferty M J, Cheek K E, Courtney K P, Yusupova M, Garrett M E, Ashley-Koch A, Crawford G E, Love M I, Torre-Ubieta L, Geschwind D H, Stein J L. Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation. Nat Neurosci, 2021, 24: 941-953.
doi: 10.1038/s41593-021-00858-w pmid: 34017130
[27] Liu L Q, Liu C Y, Quintero A, Wu L, Yuan Y, Wang M Y, Cheng M N, Leng L Z, Xu L Q, Dong G Y, Li R, Liu Y, Wei X Y, Xu J S, Chen X W, Lu H, Chen D S, Wang Q L, Zhou Q, Lin X X, Li G, Liu S, Wang Q, Wang H R, Fink J L, Gao Z L, Liu X, Hou Y, Zhu S D, Yang H M, Ye Y, Lin G, Chen F, Herrmann C, Eils R, Shang Z C, Xu X. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun, 2019, 10: 470.
doi: 10.1038/s41467-018-08205-7 pmid: 30692544
[28] Muto Y, Wilson P C, Ledru N, Wu H J, Dimke H, Waikar S S, Humphreys B D. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun, 2021, 12: 2190.
doi: 10.1038/s41467-021-22368-w pmid: 33850129
[29] Zhang J W, Chen L L, Xing F, Kudrna D A, Yao W, Copetti D, Mu T, Li W M, Song J M, Xie W B, Lee S H, Talag J, Shao L, An Y, Zhang C L, Ouyang Y D, Sun S, Jiao W B, Li F, Du B G, Luo M Z, Maldonado C E, Goicoechea J L, Xiong L Z, Wu C Y, Xing Y Z, Zhou D X, Yu S B, Zhao Y, Wang G W, Yu Y, Luo Y J, Zhou Z W, Hurtado B E, Danowitz A, Wing R A, Zhang Q F. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA, 2016, 113: E5163-E5171.
[30] 陈琳, 林焱, 陈鹏飞, 王绍华, 丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析. 植物学报, 2019, 54: 194-207.
doi: 10.11983/CBB18184
Chen L, Lin Y, Chen P F, Wang S H, Ding Y F. Effect of Iron deficiency on the protein profile of rice (Oryza sativa) phloem sap. Chin Bull Bot, 2019, 54: 194-207 (in Chinese with English abstract).
[31] Ling H Q, Zhao S C, Liu D C, Wang J Y, Sun H, Zhang C, Fan H J, Li D, Dong L L, Tao Y, Gao C, Wu H L, Li Y W, Cui Y, Guo X S, Zheng S R, Wang B, Yu K, Liang Q S, Yang W L, Lou X Y, Chen J, Feng M J, Jian J B, Zhang X F, Luo G B, Jiang Y, Liu J J, Wang Z B, Sha Y H, Zhang B R, Wu H, Tang D D, Shen Q H, Xue P Y, Zou S H, Wang X J, Liu X, Wang F M, Yang Y P, An X L, Dong Z Y, Zhang K P, Zhang X Q, Luo M C, Dvorak J, Tong Y P, Wang J, Yang H M, Li Z S, Wang D W, Zhang A M, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87-90.
doi: 10.1038/nature11997
[32] Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91-95.
doi: 10.1038/nature12028
[33] 韩烈保, 祁泽文, 尹德东, 晁跃辉, 袁建波, 谢琦. 一种直接使用结缕草叶片制备原生质体的方法. 北京:CN107043736B,2021-01-29.
Han L B, Qi Z W, Yin D D, Chao Y H, Yuan J B, Xie Q. A method for preparing protoplasts directly from Zoysia japonica leaves. Beijing: CN107043736B, 2021-01-29. (in Chinese)
[34] 许昊, 刘小亮, 胡玲, 于海礼, 黄毅, 李洪涛, 万瑛. 基于工程化转座酶的少量细胞RNA-seq文库构建的研究. 第三军医大学学报, 2018, 41: 866-870.
Xu H, Liu X L, Hu L, Yu H L, Huang Y, Li H T, Wang Y. RNA-seq library construction for small quantity of cells with engineered transposase. Acta Acad Med Mil Tert, 2018, 41: 866-870. (in Chinese with English abstract)
[1] ZHANG Hong-Gen,KONG Xian-Wang,ZHU Zheng-Bin,TANG Shu-Zhu,YI Chuan-Deng,GU Ming-H. Analysis of Characteristics and Heterosis ofThree-Line Parents in Hybrid Japonica Rice [J]. Acta Agron Sin, 2010, 36(05): 801-809.
[2] TANG Shu-Zhu;ZHANG Hong-Gen;KONG Xian-Wang;GU Shi-Liang; GONG Zhi-Yun; YAN Chang-Jie; LIANG Guo-Hua; GU Ming-Hong. Breeding of the Restorer Line SWR78 with Wide Compatibility and Wide Restoring Ability [J]. Acta Agron Sin, 2007, 33(10): 1567-1574.
[3] Gao Hongshan;Liu Jiarong;Tu Lichuan. Cytological Studies on the Mechanism of the Abortion of Microsporogenesis in Nucleic Male Sterile(NMS)Sesame(Sesamum indicum L.) [J]. Acta Agron Sin, 1992, 18(06): 425-428.
[4] Yang Xiaoe;Sun Xi. Physiological Effect of Nitrate or Ammonia Top-dressing on Hybrid and Conventional Rice Varieties at the Late Growth Stage [J]. Acta Agron Sin, 1991, 17(04): 283-291.
[5] Lu Shu yun;T.Kokubu M.Sato. A Study on the Crossability of Species between Group A and B in the Section Batatas of Genus Iponoea [J]. Acta Agron Sin, 1989, 15(01): 46-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .