Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1635-1646.doi: 10.3724/SP.J.1006.2024.32029

• REVIEW •     Next Articles

Carbon emission reduction in dry sloping land in Southwest China

WANG Xie1,2(), YANG Qin1, LIU Yu-Chi3, LI Qin1, YANG Qin3, CHEN Guan-Tao1, YUE Li-Jie3, ZHANG Jian-Hua1, CHEN Xin-Ping2, LIU Yong-Hong3,*()   

  1. 1Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    2School of Resources and Environment, Southwest University, Chongqing 400715, China
    3Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
  • Received:2023-08-01 Accepted:2024-03-31 Online:2024-07-12 Published:2024-04-16
  • Contact: *E-mail: 13908189593@163.com
  • Supported by:
    Natural Science Foundation of Sichuan Province(2023NSFSCO761);China Agriculture Research System of MOF and MARA(CARS-02);China Agriculture Research System of MOF and MARA(CARS-18);National Key Research and Development Program of China(2022YFD1901405);Sichuan Provincial Financial Independent Innovation Project(2022ZZCX014)

Abstract:

The agricultural ecosystem is both a carbon source and a carbon sink, with strong potential for carbon sequestration and thus makes significant contributions to the global carbon cycle. The traditional small-scale and fragmented agricultural production pattern on dry slopes in the southwestern region have brought great uncertainty to regional carbon emissions. Exploring the characteristics of carbon emissions and reduction pathways on dry slopes in the southwest is of great significance for improving the environment and enhancing the potential of regional agricultural production. This study systematically summarized the production processes of major greenhouse gases (CO2, N2O, CH4) in the agricultural ecosystem of dry slopes in the southwestern region of China. We discussed the effects of new materials and technologies application for carbon sequestration and emission reduction on dry slopes, and proposed carbon sequestration and emission reduction strategies for dry slopes in the future. (1) Given the significant differences in regional resources, industrial foundation, production scale, management methods, and ecological functions in dry slopes in the southwestern mountainous areas, suitable carbon sequestration and emission reduction measures and monitoring systems should be developed based on the specific agricultural production conditions of the region. The aim was to explore the carbon emission process and its underlying mechanisms in the context of global warming, and comprehensively enhanced the resilience of regional agricultural production to climate change. (2) Considering the high crop replanting index and fragmented spatial distribution of crops in the southwestern mountainous areas, agricultural production methods should be improved and industrial spatial layout should be optimized based on national strategies and local plans, aiming for an agricultural ecosystem with low carbon emission and high productivity. (3) As carbon emission reduction on dry slopes in the southwestern mountainous areas was a complex process, it was currently necessary to optimize and combine mature emission reduction technologies, carbon sequestration products, and carbon sequestration models in a targeted manner based on the actual structure and functional needs of regional agricultural production in the foreseeable future. This would form comprehensive carbon sequestration and emission reduction plans. In summary, this review hoped to provide a comprehensive and effective reference for further research on the carbon source and carbon sink characteristics of the agricultural ecosystem in dry slopes in the southwestern region, as well as for rational adjustment of farmland management measures.

Key words: GHG, dry sloping land, carbon sequestration and emission reduction, Southwest China

Table 1

Distribution of dry slope land in Southwest China (×104 hm2)"

指标
Indicator
全国
China
西南
Southwest China
云南Yunnan 贵州Guizhou 四川Sichuan 重庆Chongqing 广西Guangxi 西藏
Xizang
耕地总面积
Total cultivated land area
12,786.19 1971.52 539.55 347.26 522.72 187.02 330.76 44.21
按坡度划分
Divided by slope
坡度≤2°
Slope less than 2°
7919.03 351.64 60.55 14.54 72.57 10.14 176.18 17.66
2°<坡度≤6°
Slope between 2° and 6°
1959.32 292.47 63.77 37.35 85.15 26.65 69.76 9.79
6°<坡度≤15°
Slope between 6° and 15°
1712.64 677.19 167.75 141.37 227.98 77.03 52.47 10.59
15°<坡度≤25°
Slope between 15° and 25°
772.68 395.28 146.89 95.53 91.41 40.17 16.66 4.62
坡度>25°
Slope greater than 25°
422.52 254.93 100.59 58.47 45.61 33.03 15.69 1.54
按类型划分
Divided by type
水田
Paddy field
3139.20 647.23 99.14 88.39 226.36 70.41 162.79 0.14
水浇地
Irrigated land
3211.48 56.74 17.87 0.45 5.73 0.12 0.80 31.77
旱地
Dry land
6435.51 1267.54 422.54 258.42 290.62 116.49 167.17 12.30
6°<坡度≤15°占比(%)
Proportion of land area with a slope between 6° and 15° (%)
13.40 34.35 31.10 40.71 55.60 62.29 15.86 23.96
旱地占比(%)
Proportion of dryland area (%)
50.33 64.29 78.31 74.42 43.61 41.19 47.91 27.82
[1] 王明星, 张仁健, 郑循华. 温室气体的源与汇. 气候与环境研究, 2000, 5(1): 75-79.
Wang M X, Zhang R J, Zheng X H. Sources and sinks of green house gases. Clim Environ Res, 2000, 5(1): 75-79 (in Chinese with English abstract).
[2] IPCC. Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2021. pp 3-32.
[3] IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA, 2022. pp 215-294.
[4] Liu F S, Chen Y, Shi W J, Zhang S, Tao F L, Ge Q S. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J Geogr Sci, 2017, 27: 1085-1099.
doi: 10.1007/s11442-017-1423-3
[5] 张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54: 3892-3902.
doi: 10.3864/j.issn.0578-1752.2021.18.009
Zhang W J, Yan S J, Zhang J, Jiang Y, Deng A X. Win-win strategy for national food security and agricultural double-carbon goals. Sci Agric Sin, 2021, 54: 3892-3902 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.18.009
[6] Tahir M A, Hamza A, Noor U S, Hussain S, Xie Z, Brestic M, Rastogi A, Allakhverdiev S I, Sarwar G. Carbon sequestrating fertilizers as a tool for carbon sequestration in agriculture under aridisols. Carbon Lett, 2022, 32: 1631-1644.
[7] Li C, Xiao C W, Guenet B, Li M X, Xu L, He N P. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biol Biochem, 2022, 167: 108589.
[8] Rocci K S, Lavallee J M, Stewart C E, Cotrufo M F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: a meta-analysis. Sci Total Environ, 2021, 793: 148569.
[9] Witzgall K, Vidal A, Schubert D I, Höschen C, Schweizer S A, Buegger F, Pouteau V, Chenu C, Mueller C W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat Commun, 2021, 12: 4115.
doi: 10.1038/s41467-021-24192-8 pmid: 34226560
[10] Zhang F, Wang Z, Glidden S, Wu Y P, Tang L, Liu Q Y, Li C S, Frolking S. Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century. Sci Rep, 2017, 7: 7144.
doi: 10.1038/s41598-017-07237-1 pmid: 28769075
[11] 熊瑛, 王龙昌, 赵琳璐, 杜娟, 张赛, 周泉. 保护性耕作下蚕豆/玉米/甘薯三熟制农田土壤呼吸、碳平衡及经济-环境效益特征. 中国生态农业学报, 2018, 26: 1653-1662.
Xiong Y, Wang L C, Zhao L L, Du J, Zhang S, Zhou Q. Soil respiration, carbon balance, and economic and environmental benefits of triple intercropping system of fava bean, maize and sweet potato under conservation tillage. Chin J Eco-Agric, 2018, 26: 1653-1662 (in Chinese with English abstract).
[12] Xia L, Shu K L, Chen D, Wang J, Quan T, Yan X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? a meta-analysis. Global Change Biol, 2017, 23: 1917-1925.
doi: 10.1111/gcb.13455 pmid: 27506858
[13] Yang F, He F, Li S, Li M, Wu P. A new estimation of carbon emissions from land use and land cover change in China over the past 300 years. Sci Total Environ, 2023, 863: 160963.
[14] Wang Y G, Luo G P, Li C F, Ye H, Shi H Y, Fan B B, Zhang W Q, Zhang C, Xie M J, Zhang Y. Effects of land clearing for agriculture on soil organic carbon stocks in drylands: a meta-analysis. Global Change Biol, 2022, 29: 547-562.
[15] 葛全胜, 戴君虎, 何凡能, 潘嫄, 王梦麦. 过去300年中国土地利用、土地覆被变化与碳循环研究. 中国科学(D辑), 2008, 38: 197-210.
Ge Q S, Dai J H, He F N, Pan Y, Wang M M. Land use, land cover change and carbon cycle in China over the past 300 years. Sci China (Ser D), 2008, 38: 197-210 (in Chinese with English abstract).
[16] 金琳, 李玉娥, 高清竹, 刘运通, 万运帆, 秦晓波, 石锋. 中国农田管理土壤碳汇估算. 中国农业科学, 2008, 41: 734-743.
Jin L, Li Y E, Gao Q Z, Liu Y T, Wan Y F, Qin X B, Shi F. Estimate of carbon sequestration under cropland management in China. Sci Agric Sin, 2008, 41: 734-743 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2008.03.014
[17] Wang H, Ren T, Yang H, Feng Y Q, Feng H L, Liu G S, Yin Q Y, Shi H Z. Research and application of biochar in soil CO2 emission, fertility, and microorganisms: a sustainable solution to solve China’s agricultural straw burning problem. Sustainability, 2020, 12: 1922.
[18] 李飞跃, 汪建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算. 农业工程学报, 2013, 29(14): 1-7.
Li F Y, Wang J F. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China. Trans CSAE, 2013, 29(14): 1-7 (in Chinese with English abstract)
[19] 宋秋来, 王峭然, 王麒, 冯延江, 孙羽, 曾宪楠, 来永才. 玉米秸秆还田对黑土碳排放的影响. 江苏农业科学, 2017, 45(13): 219-222.
Song Q L, Wang Q R, Wang Q, Feng Y J, Sun Y, Zeng X N, Lai Y C. Effects of corn straw returning on carbon emission in black soil. Jiangsu Agric Sci, 2017, 45(13): 219-222 (in Chinese with English abstract).
[20] Hao X X, Han X Z, Wang S Y, Li L J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil Tillage Res, 2022, 215: 105221.
[21] 陈硕桐, 夏鑫, 丁元君, 冯潇, 刘晓雨, Marios D, 李恋卿, 潘根兴. 不同形态秸秆还田下乌栅土耕层土壤有机质含量与组成变化. 中国农业科学, 2023, 56: 2518-2529.
doi: 10.3864/j.issn.0578-1752.2023.13.007
Chen S T, Xia X, Ding Y J, Feng X, Liu X Y, Marios D, Li L Q, Pan G X. Changes in topsoil organic matter content and composition of a gleyic stagnic anthrosol amended with maize residue in different forms from the Tai Lake Plain, China. Sci Agric Sin, 2023, 56: 2518-2529 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.13.007
[22] Guo L Y, Wu G L, Li Y, Li C H, Liu W J, Meng J, Liu H T, Yu X F, Jiang G M. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China. Soil Tillage Res, 2016, 156: 140-147.
[23] Dong Q G, Yang Y C, Yu K, Feng H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric Water Manag, 2018, 201: 133-143.
[24] 徐清华, 张广胜. 农业机械化对农业碳排放强度影响的空间溢出效应基于282个城市面板数据的实证. 中国人口·资源与环境, 2022, 32(4): 23-33.
Xu Q H, Zhang G S. Spatial spillover effects of agricultural mechanization on agricultural carbon emission intensity: an empirical study based on panel data of 282 cities. China Popul Resour Environ, 2022, 32(4): 23-33 (in Chinese with English abstract).
[25] 徐英德. 基于保护性农业的土壤固碳过程研究进展. 中国生态农业学报, 2022, 30: 658-670.
Xu Y D. Conservation agriculture-mediated soil carbon sequestration: a review. Chin J Eco-Agric, 2022, 30: 658-670 (in Chinese with English abstract).
[26] 陈柔, 何艳秋, 朱思宇, 徐杰. 我国农业碳排放双重性及其与经济发展的协调性研究. 软科学, 2020, 34: 132-138.
Chen R, He Y Q, Zhu S Y, Xu J. Research on the duality of agricultural carbon emission in our country and its coordination with economic development. Soft Sci, 2020, 34: 132-138 (in Chinese with English abstract).
[27] 李新华, 朱振林, 董红云, 杨丽萍, 张锡金, 郭洪海. 氮肥减施对黄淮海地区麦田温室气体排放的影响. 土壤与作物, 2016, 5(4): 215-222.
Li X H, Zhu Z L, Dong H Y, Yang L P, Zhang X J, Guo H H. Effects of reduced n fertilizer application on greenhouse gas emissions from wheat fields in Huang-Huai-Hai area. Soil Crop, 2016, 5(4): 215-222 (in Chinese with English abstract).
[28] 姚凡云, 王立春, 多馨曲, 刘志铭, 吕艳杰, 曹玉军, 魏雯雯, 王永军. 不同氮肥对东北春玉米农田温室气体周年排放的影响. 应用生态学报, 2019, 30: 1303-1311.
doi: 10.13287/j.1001-9332.201904.030
Yao F Y, Wang L C, Duo X Q, Liu Z M, Lyu Y J, Cao Y J, Wei W W, Wang Y J. Effects of different nitrogen fertilizers on annual emissions of greenhouse gas from maize field in Northeast China. Chin J Appl Ecol, 2019, 30: 1303-1311 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201904.030
[29] 曹文超, 宋贺, 陈吉吉, 郭景恒, 陈清, 王敬国. 水分和有机肥投入对设施菜田土壤N2O、N2和CO2排放及产物比的影响. 土壤通报, 2018, 49: 469-477.
Cao W C, Song H, Chen J J, Guo J H, Chen Q, Wang J G. Effects of manure application and irrigation on N2O, N2, and CO2 production and emission from a greenhouse vegetable soil. Chin J Soil Sci, 2018, 49: 469-477 (in Chinese with English abstract).
[30] 王春新, 于鹏, 张玉玲, 范庆锋, 虞娜, 邹洪涛, 张玉龙. 氮肥与有机肥配施对设施土壤呼吸的影响. 土壤通报, 2017, 48: 146-154.
Wang C X, Yu P, Zhang Y L, Fan Q F, Yu N, Zou H T, Zhang Y L. Effect of combined application of nitrogen fertilizer and manure on soil respiration in greenhouse cultivation. Chin J Soil Sci, 2017, 48: 146-154 (in Chinese with English abstract).
[31] 王亚芳, 赵以铭, 李英杰, 徐梓楷, 李国元, 王敬国, 林杉. 秸秆和生物炭添加量及比例对华北下沉式设施菜田土壤CO2排放的影响. 安徽农业科学, 2021, 49(21): 85-90.
Wang Y F, Zhao Y M, Li Y J, Xu Z K, Li G Y, Wang J G, Lin S. Effects of additive amounts and ratios of straw and biochar on CO2emissions from the soil of sunken vegetable fields in North China. J Anhui Agric Sci, 2021, 49(21): 85-90 (in Chinese with English abstract).
[32] 王晓娇, 张仁陟, 齐鹏, 焦亚鹏, 蔡立群, 武均, 谢军红. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响. 农业工程学报, 2019, 35(10): 99-107.
Wang X J, Zhang R Z, Qi P, Jiao Y P, Cai L Q, Wu J, XIE J H. Meta-analysis on farmland soil CO2 emission in Northern China affected by organic fertilizer. Trans CSAE, 2019, 35(10): 99-107 (in Chinese with English abstract).
[33] 彭玉龙, 万军, 芶剑渝, 王慎强, 李青山. 有机肥配施比例对植烟土壤供氮能力和温室气体排放的影响. 西南农业学报, 2023, 36: 374-385.
Peng Y L, Wan J, Gou J Y, Wang S Q, Li Q S. Effect of different combined application rates of organic fertilizer on nitrogen supply capacity and greenhouse gas emission of tobacco-growing soil. Southwest China J Agric Sci, 2023, 36: 374-385 (in Chinese with English abstract).
[34] Snyder C S, Bruulsema T W, Jensen T L, Fixen P E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ, 2009, 133: 247-266.
[35] 姚瑶, 李广, 王钧, 杨传杰, 张世康, 刘帅楠. 不同耕作措施下旱作春小麦农田二氧化碳排放模拟及敏感性分析. 干旱地区农业研究, 2021, 39(3): 171-178.
Yao Y, Li G, Wang J, Yang C J, Zhang S K, Liu S N. Simulation and sensitivity analysis of carbon dioxide emissions under different tillage systems in dryland spring wheat fields. Agric Res Arid Areas, 2021, 39(3): 171-178 (in Chinese with English abstract).
[36] 吕锦慧, 武均, 张军, 王泳斌, 张仁陟. 不同耕作措施下旱作农田土壤CH4、CO2排放特征及其影响因素. 干旱区资源与环境, 2018, 32(12): 26-33.
Lyu J H, Wu J, Zhang J, Wang Y B, Zhang R Z. Characteristics and influencing factors of soil CH4 and CO2 emissions under different tillage measures. J Arid Land Resour Environ, 2018, 32(12): 26-33 (in Chinese with English abstract).
[37] 禄兴丽, 廖允成. 不同耕作措施对旱作夏玉米田土壤呼吸及根呼吸的影响. 环境科学, 2015, 36: 2266-2273.
Lu X L, Liao Y C. Effects of tillage on soil respiration and root respiration under rain-fed summer corn field. Environ Sci, 2015, 36: 2266-2273 (in Chinese with English abstract).
[38] Ge T D, Wu X H, Liu Q, Zhu Z K, Yuan H Z, Wang W, Whiteley A S, Wu J S. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils. Sci Rep, 2016, 6: 19784.
[39] 韩冰, 王效科, 逯非, 段晓男, 欧阳志云. 中国农田土壤生态系统固碳现状和潜力. 生态学报, 2008, 28: 612-619.
Han B, Wang X K, Lu F, Duan X N, Ou-Yang Z Y. Soil carbon sequestration and its potential by cropland ecosystems in China. Acta Ecol Sin, 2008, 28: 612-619 (in Chinese with English abstract).
[40] 谢华玲, 迟培娟, 杨艳萍. 双碳战略背景下主要发达经济体低碳农业行动分析. 世界科技研究与发展, 2022, 44: 605-617.
Xie H L, Chi P J, Yang Y P. Analysis of low-carbon agriculture action in major developed economies under the background of carbon peaking and carbon neutrality strategies. World Sci Technol Res Dev, 2022, 44: 605-617.
[41] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展. 土壤与作物, 2012, 1(4): 219-226.
Zhang Q F, Wang G H. Research progress on physicochemical properties of biochar and its effect on soil improvement. Soil Crop, 2012, 1(4): 219-226 (in Chinese with English abstract).
[42] Zhang J N, Zhang X X, Sun H F, Wang C, Zhou S. Carbon sequestration and nutrients improvement meditated by biochar in a 3-year vegetable rotation system. J Soils Sediments, 2022, 22: 1385-1396.
[43] Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int, 2016, 87: 1-12.
doi: 10.1016/j.envint.2015.10.018 pmid: 26638014
[44] 傅伟军, 徐向瑞, 魏玲玲, 叶正钱, 欧阳潇, 吴闻澳, 柳丹, 方先芝, 倪治华. 生物炭农田应用的固碳减排研究进展. 南京信息工程大学学报(自然科学版), 2023, 15(1): 1-15.
Fu W J, Xu X R, Wei L L, Ye Z Q, Ou-Yang X, Wu W N, Liu D, Fang X Z, Ni Z H. Effect of biochar agricultural application on carbon sequestration and emission reduction: a review. J Nanjing Univ Inf Sci Technol (Nat Sci Edn), 2023, 15(1): 1-15 (in Chinese with English abstract).
[45] Anna P D, Edward W. Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol. Environ Monit Assess, 2014, 186: 8425-8441.
[46] 孙颖, 赵晓会, 和文祥, 高亚军, 曹卫东. 绿肥对土壤酶活性的影响. 西北农业学报, 2011, 20(3): 115-119.
Sun Y, Zhao X H, He W X, Gao Y J, Cao W D. Effect of green manure on soil enzyme activity. Acta Agric Boreali-Occident Sin, 2011, 20(3): 115-119 (in Chinese with English abstract).
[47] 张曦慧, 车宗贤, 张久东. 玉米间作绿肥对土壤呼吸及土壤有机碳的影响. 国土与自然资源研究, 2021, 193(4): 75-79.
Zhang X H, Che Z X, Zhang J D. Effects of inter-cropped corn with green manures on soil respiratory rates and soil organic carbon. Territ Nat Resour Stud, 2021, 193(4): 75-79 (in Chinese with English abstract).
[48] Gao S J, Li S, Zhou G P, Cao W D. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China. J Integr Agric, 2023, 22: 2233-2247.
doi: 10.1016/j.jia.2022.12.005
[49] 张学良, 张宇亭, 刘瑞, 谢军, 张建伟, 徐文静, 石孝均. 绿肥不同还田方式对土壤温室气体排放的影响. 草业学报, 2021, 30(5): 25-33.
doi: 10.11686/cyxb2020431
Zhang X L, Zhang Y T, Liu R, Xie J, Zhang J W, Xu W J, Shi X J. Effects of green manure return regimes on soil greenhouse gas emissions. Acta Pratac Sin, 2021, 30(5): 25-33 (in Chinese with English abstract).
[50] Dachraoui M, Sombrero A. Soil organic carbon accumulation and carbon dioxide emissions during a 6-year study in irrigated continuous maize under two tillage systems in semiarid Mediterranean conditions. Span J Agric Res, 2021, 19: e1102.
[51] Mo F, Zhang Y Y, Li T, Wang Z T, Yu K L, Wen X X, Xiong Y C, Jia Z K, Liao Y C. Fate of photosynthesized carbon as regulated by long-term tillage management in a dryland wheat cropping system. Soil Biol Biochem, 2019, 138: 107581.
[52] 周艳翔, 吕茂奎, 谢锦升, 杨智杰, 江军, 杨玉盛. 深层土壤有机碳的来源、特征与稳定性. 亚热带资源与环境学报, 2013, 8: 48-55.
Zhou Y Y, Lyu M K, Xie J S, Yang Z J, Jiang J, Yang Y S. Sources, characteristics and stability of organic carbon in deep soil. J Subtrop Resour Environ, 2013, 8: 48-55.
[53] Kirschbaum M U, Don A, Beare M H, Hedley M J, Pereira R C, Curtin D, McNally S R, Lawrence-Smith E J. Sequestration of soil carbon by burying it deeper within the profile: atheoretical exploration of three possible mechanisms. Soil Biol Biochem, 2021, 163: 108432.
[54] Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci USA, 2014, 111: 9199-9204.
doi: 10.1073/pnas.1322434111 pmid: 24927583
[55] 齐玉春, 董云社. 土壤氧化亚氮产生、排放及其影响因素. 地理学报, 1999, 54: 534-542.
doi: 10.11821/xb199906007
Qi Y C, Dong Y S. Nitrous oxide emissions from soil and some influence factors. Acta Geogy Sin, 1999, 54: 534-542 (in Chinese with English abstract).
[56] 齐鹏, 王晓娇, 姚一铭, 陈晓龙, 武均, 蔡立群. 不同耕作方法和施氮量对旱作农田土壤CO2排放及碳平衡的影响. 草业学报, 2021, 30(1): 96-106.
doi: 10.11686/cyxb2020136
Qi P, Wang X J, Yao Y M, Chen X L, Wu J, Cai L Q. Effects of different tillage methods and nitrogen application rates on soil CO2 emission and carbon balance in dry farmland. J Pratac Sci, 2021, 30(1): 96-106 (in Chinese with English abstract).
[57] Wolf I, Russow R. Different pathways of formation of N2O, N2 and NO in black earth soil. Soil Biol Biochem, 2000, 32: 229-239.
[58] Weitz A M, Linder E, Frolking S, Crill P M, Keller M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biol Biochem, 2001, 33: 1077-1093.
[59] Sánchez-Martín L, Vallejo A, Dick J, Skiba U M. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biol Biochem, 2007, 40: 142-151.
[60] Wang G, Liu P, Hu J, Zhang F. Agriculture-induced N2O emissions and reduction strategies in China. Int J Environ Res Public Health, 2022, 19: 12193.
[61] Cheng K, Yan M, Nayak D, Pan X G, Smith P, Zheng F J, Zheng W J. Carbon footprint of crop production in China: an analysis of National Statistics data. J Agric Sci, 2015, 153: 422-431.
[62] Xu C, Zhu H S, Wang J, Ji C, Liu Y B, Chen D Y, Zhang H, Wang J D, Zhang Y C. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biol Biochem, 2023, 178: 108961.
[63] 肖乾颖, 黄有胜, 胡廷旭, 朱波. 施肥方式对紫色土农田生态系统N2O和NO排放的影响. 中国生态农业学报, 2018, 26(2): 203-213.
Xiao Q Y, Huang Y S, Hu T X, Zhu B. Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil. Chin J Eco-Agric, 2018, 26(2): 203-213 (in Chinese with English abstract).
[64] 奚雅静, 汪俊玉, 李银坤, 武雪萍, 李晓秀, 王碧胜, 李生平, 宋霄君, 刘彩彩. 滴灌水肥一体化配施有机肥对土壤N2O排放与酶活性的影响. 中国农业科学, 2019, 52: 3611-3624.
doi: 10.3864/j.issn.0578-1752.2019.20.012
Xi Y J, Wang J Y, Li Y K, Wu X P, Li X X, Wang B S, Li S P, Song X J, Liu C C. Effects of drip irrigation water and fertilizer integration combined with organic fertilizers on soil N2O emission and enzyme activity. Sci Agric Sin, 2019, 52: 3611-3624 (in Chinese with English abstract).
[65] 张锦源, 李彦生, 于镇华, 谢志煌, 刘俊杰, 王光华, 刘晓冰, 吴俊江, Stephen J H, 金剑. 作物-土壤氮循环对大气CO2浓度和温度升高响应的研究进展. 中国农业科学, 2021, 54: 1684-1701.
doi: 10.3864/j.issn.0578-1752.2021.08.009
Zhang J Y, Li Y S, Yu Z H, Xie Z H, Liu J J, Wang G H, Liu X B, Wu J J, Stephen J H, Jin J. Nitrogen cycling in the crop-soil continuum in response to elevated atmospheric CO2concentration and temperature: a review. Sci Agric Sin, 2021, 54: 1684-1701 (in Chinese with English abstract).
[66] 王苏平, 辉建春, 林立金, 朱雪梅, 朱波. 施肥制度对川中丘陵区玉米不同生育期土壤反硝化酶活性的影响. 水土保持研究, 2012, 19: 274-277.
Wang S P, Hui J C, Lin L J, Zhu X M, Zhu B. Effects of fertilizer system on soil denitrification enzyme activity at different growth stages of maize in hilly regions of middle Sichuan. Res Soil Water Conserv, 2012, 19: 274-277 (in Chinese with English abstract).
[67] 申卫收, 熊若男, 张欢欢, 杨思琪, 高南. 微生物介导的农业土壤氧化亚氮减排研究进展. 土壤学报, 2023, 60: 332-344.
Shen W S, Xiong R N, Zhang H H, Yang S Q, Gao N. Research progress on microbial-mediated mitigation of nitrous oxide emissions from agricultural soils. Acta Pedol Sin, 2023, 60: 332-344.
[68] Domeignoz-Horta L A, Putz M, Spor A, Bru D, Breuil M C, Hallin S, Philippot L. Non-denitrifying nitrous oxide-reducing bacteria: an effective N2O sink in soil. Soil Biol Biochem, 2016, 103: 376-379.
[69] 林伟, 丁军军, 李玉中, 徐春英, 李巧珍, 郑欠, 庄姗. 有机肥和无机肥对菜地土壤N2O排放及其来源的影响. 应用生态学报, 2018, 29: 1470-1478.
doi: 10.13287/j.1001-9332.201805.029
Lin W, Ding J J, Li Y Z, Xu C Y, Li Q Z, Zheng Q, Zhuang S. Effects of organic and inorganic fertilizers on soil N2O emission and its source in vegetable fields. Chin J Appl Ecol, 2018, 29: 1470-1478 (in Chinese with English abstract).
[70] 张杏雨, 李思宇, 余锋, 高捷, 成大宇, 顾希, 刘立军. 作物秸秆还田对稻田温室气体排放效应的研究进展. 杂交水稻, 2021, 36(5): 1-7.
Zhang X Y, Li S Y, Yu F, Gao J, Cheng D Y, Gu X, Liu L J. Research progresses on the effects of crop straw returning on greenhouse gas emission in paddy field. Hybrid Rice, 2021, 36(5): 1-7 (in Chinese with English abstract).
[71] 张楠, 潘仕球, 乔云发, 朱保国, 苗淑杰. 秸秆还田及添加生物炭对黑土玉米生长季N2O排放的影响. 中国农学通报, 2022, 38(27): 79-85.
doi: 10.11924/j.issn.1000-6850.casb2021-0943
Zhang N, Pan S Q, Qiao Y F, Zhu B G, Miao S J. The response of N2O emissions to straw returning and biochar addition during maize growing season in mollisol. Chin Agric Sci Bull, 2022, 38(27): 79-85 (in Chinese with English abstract).
[72] Cheng F, Zhang Z, Zhuang H M, Han J C, Luo Y C, Cao J, Zhang L L, Zhang J, Xu J L, Tao F L. ChinaCropSM1 km: a fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993-2018. Earth Syst Sci Data, 2023, 15: 395-409.
[73] 谢海宽, 李贵春, 徐驰, 丁武汉, 江雨倩, 王立刚, 李虎. 不同灌溉方式对设施菜地N2O排放的影响及其年际差异. 农业环境科学学报, 2018, 37: 825-832.
Xie H K, Li G C, Xu C, Ding W H, Jiang Y Q, Wang L G, Li H. Effect of irrigation pattern on soil N2O emissions and inter-annual variability in greenhouse vegetable fields. J Agro-Environ Sci, 2018, 37: 825-832 (in Chinese with English abstract).
[74] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017, 13(3): 196-204.
Tan L S. Advances in N2O generation pathway in agricultural soils and major influencing factors. Subtrop Agric Res, 2017, 13(3): 196-204.
[75] Bakken L R, Frostegård Å. Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota. Curr Opin Env Sust, 2020, 47: 89-94.
[76] Nishizawa T, Quan A H, Kai A, Tago K, Ishii S, Shen W S, Isobe K, Otsuka S, Senoo K. Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure. Biol Fert Soils, 2014, 50: 1001-1007.
[77] Gao N, Shen W S, Camargo E, Shiratori Y, Nishizawa T, Isobe K, He X H, Senoo K. Nitrous oxide (N2O)-reducing denitrifier- inoculated organic fertilizer mitigates N2O emissions from agricultural soils. Biol Fert Soils, 2017, 53: 885-898.
[78] Wu S H, Zhuang G Q, Bai Z H, Cen Y, Xu S J, Xu H S, Sun H S, Han X G, Zhuang X L. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth- promoting bacterium. Global Change Biol, 2018, 24: 2352-2365.
[79] Xu S J, Feng S G, Sun H S, Wu S H, Zhuang G Q, Deng Y, Bai Z H, Jing C Y, Zhuang X L. Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities. Environ Sci Technol, 2018, 52: 11338-11345.
[80] Liu S W, Lin F, Wu S, Ji C, Sun Y, Jin Y G, Li S Q, Li Z F, Zou J W. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Change Biol, 2017, 23: 2520-2532.
[81] Hei Z W, Peng Y T, Hao S L, Li Y M, Yang X, Zhu T B, Müller C, Zhang H Y, Hu H W, Chen Y L. Full substitution of chemical fertilizer by organic manure decreases soil N2O emissions driven by ammonia oxidizers and gross nitrogen transformations. Global Change Biol, 2023, 29: 7117-7130.
[82] 郭广正. 减氮配施硝化抑制剂对西南露地蔬菜农学和环境效应的影响. 西南大学硕士学位论文, 重庆, 2021.
Guo G Z. The Effects of Nitrogen Reduction Combined with Application of Nitrification Inhibitors on the Agronomy and Environmental Effects of Vegetables in Southwestern Open Fields. MS Thesis of Southwest University, Chongqing, China, 2021 (in Chinese with English abstract).
[83] 王宏, 姚莉, 张奇, 林超文, 刘海涛, 罗付香, 王谢, 杨璇, 章淑群. 水稻秸秆和脲酶抑制剂联合使用对油菜地氨挥发、产量和氮素利用的影响. 西南农业学报, 2023, 36: 769-776.
Wang H, Yao L, Zhang Q, Lin C W, Liu H T, Luo F X, Wang X, Yang X, Zhang S Q. Effects of combination of rice straw and urease inhibitor on ammonia volatilization, oilseed rape yield and nitrogen use efficiency. Southwest China J Agric Sci, 2023, 36: 769-776.
[84] 武岩, 红梅, 林立龙, 刘梅, 刘宇杰. 3种土壤改良剂对河套灌区玉米田温室气体排放的影响. 环境科学, 2018, 39: 310-320.
Wu Y, Hong M, Lin L L, Liu M, Liu Y J. Effects of three soil amendments on greenhouse gas emissions from corn fields in the hetao irrigation district. Environ Sci, 2018, 39: 310-320 (in Chinese with English abstract).
[85] Zhang J N, Sun H F, Ma J, Zhang X X, Wang C, Zhou S. Effect of straw biochar application on soil carbon, greenhouse gas emissions and nitrogen leaching: a vegetable crop rotation field experiment. Soil Use Manag, 2023, 39: 729-741.
[86] Sun G L, Dong Z H, Li G J, Yuan H Z, Liu J H, Yao X, Gu J J, Wu H H, Li Z H. Mn3O4 nanoparticles alleviate ROS-inhibited root apex mitosis activities to improve maize drought tolerance. Adv Biol, 2023, 7: 2200317.
[87] 王国栋, 肖元松, 彭福田, 张亚飞, 郜怀峰, 孙希武, 贺月. 尿素配施不同用量纳米碳对桃幼树生长及氮素吸收利用的影响. 中国农业科学, 2018, 51: 4700-4709.
doi: 10.3864/j.issn.0578-1752.2018.24.010
Wang G D, Xiao Y S, Peng F T, Zhang Y F, Gao H F, Sun X W, He Y. Effects of urea application combined with different amounts of nano-carbon on plant growth along with nitrogen absorption and utilization in young peach trees. Sci Agric Sin, 2018, 51: 4700-4709 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.010
[88] Zhu F N, Lin X X, Guan S, Dou S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China. Soil Use Manag, 2022, 38: 1266-1279.
[89] Wu G, Ling J, Zhao D Q, Xu Y P, Liu Z X, Wen Y, Zhou S L. Deep-injected straw incorporation improves subsoil fertility and crop productivity in a wheat-maize rotation system in the North China Plain. Field Crops Res, 2022, 286: 108612.
[90] Virk A L, Liu W S, Niu J R, Xu C T, Liu Q Y, Kan Z R, Zhao X, Zhang H L. Effects of diversified cropping sequences and tillage practices on soil organic carbon, nitrogen, and associated fractions in the North China Plain. J Soil Sci Plant Nutr, 2021, 21: 1201-1212.
[1] PAN Guang-Tang, YANG Ke-Cheng, GAO Shi-Bin. Insights on developing modern corn ecological breeding in southwest China [J]. Acta Agronomica Sinica, 2022, 48(10): 2427-2434.
[2] LI Yue,SUN Jie,CHEN Shou-Yi,XIE Zong-Ming. Cloning and Transcription Function Analysis of Cotton Transcription Factor GhGT30 Gene [J]. Acta Agron Sin, 2013, 39(05): 806-815.
[3] DONG Jia, CA Cai-Peng, WANG Li-Ke, ZHAO Liang, ZHANG Tian-Zhen, GUO Wang-Zhen. Structure and Expression Analysis of Two Novel Genes Encoding β-glucanase in Cotton [J]. Acta Agron Sin, 2011, 37(01): 40-47.
[4] WANG Lei,ZHU Yi-Chao,CAI Cai-Ping,ZHANG Tian-Zhen,GUO Wang-Zhen. Molecular Cloning and Characterization of Two Fiber Elongation Genes Using a Cotton Fiber Developmental Mutant (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2010, 36(1): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!