Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2425-2434.doi: 10.3724/SP.J.1006.2024.43012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Evaluation of editing efficiency of different CRISPR-Cas12f systems

HUANG Ling-Zhi1,2(), FU Xiao2, QI Xian-Tao2, LIU Chang-Lin2, XIE Chuan-Xiao2, WU Peng-Hao1, REN Jiao-Jiao1,*(), ZHU Jin-Jie2,*()   

  1. 1College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-03-15 Accepted:2024-06-20 Online:2024-10-12 Published:2024-07-11
  • Contact: *E-mail: renjiaojiao789@sina.com;E-mail: zhujinjie@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD1202901)

Abstract:

CRISPR/Cas12f proteins belonging to the Type V-F family are reported to be only 1/4 to 1/3 the size of Cas9 protein molecules, providing a significant advantage in viral vector delivery. However, the CRISPR/Cas12f system for gene editing in plants has been reported to have lower editing activity, limiting its broader application in plant research. In this study, we compared the editing activities of OsCas12f, SpCas12f, and UnCas12f in three different systems: in vitro digestion, yeast, and transient expression in maize protoplasts. The results showed that the editing activities of OsCas12f and SpCas12f proteins were comparable in terms of in vitro digestion of Cas12f/sgRNA complexes, while no substrate digestion activity was detected for UnCas12f. In the yeast mutant eGFP expression restoration assay, OsCas12f exhibited an editing efficiency of over 95% at the two tested loci, which was comparable to Cas12i.3. On the other hand, SpCas12f achieved editing efficiencies of 1.63% and 3.20% at the two sites, respectively, representing the next highest effect. However, UnCas12f showed minimal editing activity. Furthermore, by transiently expressing maize protoplasts, we compared the editing efficiencies of OsCas12f and SpCas12f at endogenous maize loci. It was found that OsCas12f successfully mediated targeted editing at two loci with editing efficiencies of 2.72% and 1.97%, respectively, while SpCas12f only mediated targeted editing at one locus with an editing efficiency of 1.09%. Deletion of bases was the predominant type of mutation introduced by Cas12f proteins at the target loci, with deletion lengths ranging from -9 to -17 base pairs. These comprehensive results indicate that OsCas12f can serve as a versatile tool for developing plant microgene editors and related technologies.

Key words: Cas12f, sgRNA/Cas12 ribonucleoprotein complex, protoplast, editing efficiency

Table 1

Primer sequences used in this paper"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
原核表达载体构建引物Prokaryotic expression vector construction primers
OsCas12f F CAAGGCCATGGCTGATATCGGATCCATGGACTATAAGGATCATGACG
OsCas12f R TGGTGGTGCTCGAGTGCGGCCGCAAGCTTTTACTTCTTCTTTTTAGCTTGTCC
SpCas12f F CGACAAGGCCATGGCTGATATCGGATCCATGGATTATAAAGATCATGACGGTG
SpCas12f R GGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTCTATTTTTTCTTTTTTGCCTGC
UnCas12f F CGACAAGGCCATGGCTGATATCGGATCCATGGATTATAAAGATCATGACGGTG
UnCas12f R GGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTCTATTTCTTCTTTTTAGCTTGC
酵母表达载体构建引物Yeast expression vector construction primers
pGADT7 Cas12f F1 AAGAAGAGAAAGGTCGAATTGGGTACCAAGCGTCCCGCTGCAACGAAA
pGADT7 Cas12f R1 GGGTTCCGGATCGCGGCCGCCCGGTAGAGGTGTGGTCAATAAGAG
pGADT7 Cas12f F2 GAGGAGTTTACGTCCAGCCAAGCTAGCTCTTTGAAAAGATAATGTATGA
pGADT7 Cas12f R2 GGGTTCCGGATCGCGGCCGCCCGGTAGAGGTGTGGTCAATAAGAG
pGADT7 sgRNA T1 F GAGAGAAAGGTCGAATTGGGTACCAAGCGTCCCGCTGCAACGAAA
pGADT7 sgRNA T1 R ATTAAGGGTTCCGGATCGCGGCCGCAAAAAAAACTCCTTGAGCCCCGTGCCCA
pGADT7 sgRNA T2 F AAGAGAAAGGTCGAATTGGGTACCAAGCGTCCCGCTGCAACGAAA
pGADT7 sgRNA T2 R GGGTTCCGGATCGCGGCCGCAAAAAAAATGCACCGCGGCCGCAACCGTTCAAGT
pGBKT7-eGFP F ACTGTAGCCCTAGACTTGATAGCCATCATCATATCGAAGTTTC
pGBKT7-eGFP R TTAGCTTGGCTGCAAGCGCGCCTAGTACAGCTCGTCCATGCCG
植物表达载体构建引物Plant expression vectors construct primers
pUC19 Cas12f F1 CAGCTATGACCATGATTACGCCAAGCTTATCGAGCAGCTGGCTTGTGGGGAC
pUC19 Cas12f R1 TCACGACGTTGTAAAACGACGGCCAGTGAATTCCTTATCTTTAATCATATTCC
pUC19 Cas12f sgRNA F2 ATTGATTGACAACGGATCCCCGGGTACCATGGAGTCAAAGATTCAAATAGAG
pUC19 Cas12f sgRNA R2 GTCACGACGTTGTAAAACGACGGCCAGTGAATTCCTTATCTTTAATCATATTCC
向导RNA分子体外转录引物Primers for transcription of RNA molecules in vitro
T7 sgRNA scaffold F ATTCTAATACGACTCACTATAGGGAGGGCCGACTTCCCGGCCCAAAATCGAGACAGTAGCC
T1 sgRNA scaffold R CTCCTTGAGCCCCGTGCCCACCTTCAAGCCGCTTTCGCGGCTCATGCACGG
T2 sgRNA scaffold R TGCACCGCGGCCGCAACCGTTCAACCTTCAAGCCGCTTTCGCGGCTCATGCACGG
PCR/RNP体外酶切底物扩增引物Poole/Enpp in vitro digestion substrate amplification primers
T1F CTTGACTACTACCCTCCCACC
T1R TGGTTAACTCCCCGGACCAA
T2F CCATTCCGGTATCGCTTGCT
T2R GACCCATCTGACACCGATCA
玉米原生质体靶位点扩增引物 Primers for amplification of maize protoplasts target sites
T1F1 GGAGTGAGTACGGTGTGCTTCAACTCGACTCCAGCA
T1R1 GAGTTGGATGCTGGATGGGTCGGTGCTCACCTTGAGGC
T2F1 GGAGTGAGTACGGTGTGCCCCGGACTCCAAGTACTGC
T2R1 GAGTTGGATGCTGGATGGGTACAGCGAGTGGTTCTGGA

Fig. 1

Prokaryotic expression and protein purification of different CRISPR-Cas12f proteins A: schematic diagram of the prokaryotic expression vector for CRISPR-Cas12f; B: induced expression of three types of CRISPR-Cas12f proteins at 28℃ and 37℃; C: 12% SDS-PAGE gel electrophoresis image of three CRISPR-Cas12f proteins purified by Ni-NTA chromatography."

Fig. 2

Substrate cleavage efficiency of three CRISPR-Cas12f proteins at different temperatures A: PCR/RNP digestion efficiency of Cas12f at 28℃; B: PCR/RNP digestion efficiency of Cas12f at 37℃; C: PCR/RNP digestion efficiency of Cas12f at 45℃; D: PCR/RNP digestion efficiency of Cas12f at 55℃."

Fig. 3

Substrate cleavage efficiency of three CRISPR-Cas12f proteins at different time points A: PCR/RNP digestion efficiency of Cas12f at 0.5 h; B: PCR/RNP digestion efficiency of Cas12f at 1 h; C: PCR/RNP digestion efficiency of Cas12f at 2 h; D: PCR/RNP digestion efficiency of Cas12f at 3 h."

Fig. 4

Editing efficiency of the three CRISPR-Cas12f systems in yeast A: schematic diagram of yeast transformation vector; B: schematic diagram of the editing efficiency of CRISPR-Cas12f system assessed by fluorescent protein recovery rate; C: statistics of yeast editing efficiency with different CRISPR-Cas12f."

Fig. 5

eGFP expression recovery mediated by OsCas12f system A: Cas12i.3-mediated restoration of eGFP expression, a positive control; B: no sgRNA fails to mediate restoration of eGFP in the OsCas12f system; C: sgRNA-T1 mediates restoration of eGFP using OsCas12f system; D: sgRNA-T2 mediates restoration of eGFP using OsCas12f system."

Table 2

Editing activity of maize endogenous loci mediated by transient expression of OsCas12f and SpCas12f"

系统
System
靶位点突变
Target mutation (5°-3°)
突变类型
Mutation
type
突变数量
Mutation number
比例
Percentage
(%)
OsCas12f-T1 ATCG$\underline{\underline{\text{TTC}}}$ TGGGCACGGGGCTCAAGGAGTGCATCCT WT 6734 91.91
ATCG$\underline{\underline{\text{TTC}}}$TGGGCACGGGGc-----------ATCCT -11 bp 199 2.72
ATCG$\underline{\underline{\text{TTC}}}$TGGGCACGGGGCt----------ATCCT -10 bp 176 2.40
ATCG$\underline{\underline{\text{TTC}}}$TGGGCACGGGg--------------CCT -14 bp 136 1.86
ATCG$\underline{\underline{\text{TTC}}}$TGGGCACGGGGCt---------CATCCT -9 bp 82 1.12
OsCas12f-T2 GCCACA TGCACCGCGGCCGCAACCGTTCAA$\underline{\underline{\text{GAAA}}}$GCCTGTGGAAGCGCA WT 7655 98.03
GCCACATGCa-----------ACCGTTCAA$\underline{\underline{\text{GAAA}}}$GCCTGTGGAAGCGCA -11 bp 154 1.97
SpCas12f-T2 GCCACA TGCACCGCGGCCGCAACCGTTCAA$\underline{\underline{\text{GAAA}}}$GCCTGTGGAAGCGCA WT 7506 98.91
GCCACATGCACCGCGGCCGCA---GTG$\underline{\underline{\text{GAA-a}}}$-------------CGCA -17 bp 83 1.09
[1] Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol, 2019, 70: 667-697.
doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493
[2] Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi VM, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis G D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jacob H J, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325: 433.
doi: 10.1126/science.1172447 pmid: 19628861
[3] An Y, Geng Y, Yao J, Fu C, Lu M, Wang C, Du J. Efficient genome editing in populus using CRISPR/Cas12a. Front Plant Sci, 2020, 11: 593938.
[4] Makarova K S, Wolf Y I, Alkhnbashi O S, Costa F, Shah S A, Saunders S J, Barrangou R, Brouns S J, Charpentier E, Haft D H, Horvath P, Moineau S, Mojica F J, Terns R M, Terns M P, White M F, Yakunin A F, Garrett R A, van der Oost J, Backofen R, Koonin E V. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13: 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297
[5] Makarova K S, Wolf Y I, Iranzo J, Shmakov S A, Alkhnbashi O S, Brouns S J J, Charpentier E, Cheng D, Haft D H, Horvath P, Moineau S, Mojica F J M, Scott D, Shah S A, Siksnys V, Terns M P, Venclovas Č, White M F, Yakunin A F, Yan W, Zhang F, Garrett R A, Backofen R, van der Oost J, Barrangou R, Koonin E V. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol, 2020, 18: 67-83.
doi: 10.1038/s41579-019-0299-x pmid: 31857715
[6] Nishimasu H, Cong L, Yan W X, Ran F A, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O. Crystal Structure of Staphylococcus aureus Cas9. Cell, 2015, 162: 1113-1126.
doi: 10.1016/j.cell.2015.08.007 pmid: 26317473
[7] Kim E, Koo T, Park S W, Kim D, Kim K, Cho H Y, Song D W, Lee K J, Jung M H, Kim S, Kim J H, Kim J H, Kim J S. In vivo genome editing with a small Cas 9 orthologue derived from Campylobacter jejuni. Nat Commun, 2017, 8: 14500.
[8] Zetsche B, Gootenberg J S, Abudayyeh O O, Slaymaker I M, Makarova K S, Essletzbichler P, Volz S E, Joung J, van der Oost J, Regev A, Koonin E V, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163: 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[9] Teng F, Cui T, Gao Q, Guo L, Zhou Q, Li W. Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov, 2019, 5: 23.
doi: 10.1038/s41421-019-0091-0 pmid: 31016029
[10] McGaw C, Garrity A J, Munoz G Z, Haswell J R, Sengupta S, Keston-Smith E, Hunnewell P, Ornstein A, Bose M, Wessells Q, Jakimo N, Yan P, Zhang H, Alfonse L E, Ziblat R, Carte J M, Lu W C, Cerchione D, Hilbert B, Sothiselvam S, Yan W X, Cheng D R, Scott D A, DiTommaso T, Chong S. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun, 2022, 13: 2833.
doi: 10.1038/s41467-022-30465-7 pmid: 35595757
[11] Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, Wang T, Li M, Li M, Lu D, Chang A C Y, Yang L, Gao S, Wang Y, Lan F. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Sci Adv, 2023, 9: eabo6405.
[12] Hirano S, Kappel K, Altae-Tran H, Faure G, Wilkinson M E, Kannan S, Demircioglu F E, Yan R, Shiozaki M, Yu Z, Makarova K S, Koonin E V, Macrae R K, Zhang F. Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Nature, 2022, 610: 575-581.
[13] Altae-Tran H, Kannan S, Demircioglu F E, Oshiro R, Nety S P, McKay L J, Dlakić M, Inskeep W P, Makarova K S, Macrae R K, Koonin E V, Zhang F. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 2021, 374: 57-65.
doi: 10.1126/science.abj6856 pmid: 34591643
[14] Kim D Y, Lee J M, Moon S B, Chin H J, Park S, Lim Y, Kim D, Koo T, Ko J H, Kim Y S. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol, 2022, 40: 94-102.
[15] Xin C, Yin J, Yuan S, Ou L, Liu M, Zhang W, Hu J. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat Commun, 2022, 13: 5623.
doi: 10.1038/s41467-022-33346-1 pmid: 36153319
[16] Wang Y, Wang Y, Pan D, Yu H, Zhang Y, Chen W, Li F, Wu Z, Ji Q. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep, 2022, 40: 111418.
[17] Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, Xue M, Zhang W, Wang Y, Lin J, Zhou J, Shen X, Wei Y, Zhong N, Bai W, Yuan Y, Shi L, Zhou Y, Yang H. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun, 2023, 14: 2046.
doi: 10.1038/s41467-023-37829-7 pmid: 37041195
[18] Sukegawa S, Nureki O, Toki S, Saika H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front Genome Ed, 2023, 5: 1138843.
[19] Jiang Y Y, Chai Y P, Lu M H, Han X L, Lin Q, Zhang Y, Zhang Q, Zhou Y, Wang X C, Gao C, Chen Q J. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol, 2020, 21: 257.
[20] Bähler J, Wise J A. Preparation of total RNA from fission yeast. Cold Spring Harb Protoc, 2017, 2017: pdb. prot091629.
[21] Cao J, Yao D, Lin F, Jiang M Y. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant, 2014, 36: 1271-1281.
[22] Karvelis T, Bigelyte G, Young J K, Hou Z, Zedaveinyte R, Budre K, Paulraj S, Djukanovic V, Gasior S, Silanskas A, Venclovas Č, Siksnys V. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res, 2020, 48: 5016-5023.
doi: 10.1093/nar/gkaa208 pmid: 32246713
[23] Xiao R, Li Z, Wang S, Han R, Chang L. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Nucleic Acids Res, 2021, 49: 4120-4128.
[24] Bigelyte G, Young J K, Karvelis T. Miniature type V-F CRISPR- Cas nucleases enable targeted DNA modification in cells. Nat Commun, 2021, 12: 6191.
doi: 10.1038/s41467-021-26469-4 pmid: 34702830
[25] Hill Z B, Martinko A J, Nguyen D P, Wells J A. Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nat Chem Biol, 2018, 14: 112-117.
doi: 10.1038/nchembio.2529 pmid: 29200207
[1] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[2] Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016.
[3] YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037.
[4] LI Ji-Yang,HU Yan,YAO Rui,DAI Pei-Hong,LIU Xiao-Dong. Enhancing CRISPR/Cas9 genomic editing efficiency based on optimization of sgRNA of Gossypium barbadense L. [J]. Acta Agronomica Sinica, 2019, 45(10): 1522-1534.
[5] Zhang PENG, Hua-Rong TONG, Guo-Lu LIANG, Yi-Qi SHI, Lian-Yu YUAN. Protoplast Isolation and Fusion Induced by PEG with Leaves and Roots of Tea Plant (Camellia sinensis L. O. Kuntze) [J]. Acta Agronomica Sinica, 2018, 44(03): 463-470.
[6] Ji-Yang LI, Jian-Feng LEI, Pei-Hong DAI, Rui YAO, Yan-Ying QU, Quan-Jia CHEN, Yue LI, Xiao-Dong LIU. Establishment of CRISPR/Cas9 Genome Editing System Based on GbU6 Promoters in Cotton (Gossypium barbadense L.) [J]. Acta Agronomica Sinica, 2018, 44(02): 227-235.
[7] GUO Yan-Ping**,REN Cheng-Jie**,LI Zhi-Wei,WANG Wen-Bin,ZHANG Ren-He,LU Hai-Dong,LIU Jian-Chao,ZHANG Xing-Hua,XUE Ji-Quan,GUO Dong-Wei. Isolation and Flow Purification of Endosperm Protoplast from Developing Seed of Maize [J]. Acta Agron Sin, 2014, 40(03): 424-430.
[8] LI Ni-Na,DING Lin-Yun,ZHANG Zhi-Yuan,GUO Wang-Zhen. Isolation of Mesophyll Protoplast and Establishment of Gene Transient Expression System in Cotton [J]. Acta Agron Sin, 2014, 40(02): 231-239.
[9] HU Qiong and LI Yun-Chang. Induction and Improvement of Cytoplasmic Male Sterility in Oilseed Brassica by Somatic Hybridization [J]. Acta Agron Sin, 2006, 32(01): 138-143.
[10] LI Tao;DAI Chao-Xi. Studies on Improving the Cell Division Frequency of Potato Protoplasts [J]. Acta Agron Sin, 2000, 26(06): 953-958.
[11] YANG Yue-Sheng;JIAN Yu-Yu;CHEN Yuan-Ling. Comparison of Culture Procedures for Regeneration of Plants from Protoplast-der ived Calluses of Rice(Oryza sativa L.) [J]. Acta Agron Sin, 2000, 26(04): 490-495.
[12] Xiao Wen-yan; Wang Lian-zheng. Protoplast Culture and Plant Regeneration of Immature Cotyledons of Soybean (Glycine max L.) [J]. Acta Agron Sin, 1994, 20(06): 665-669.
[13] Lu Xue-hua; Liu Zhong-zhu; Lin Yong-lie; Lin Da-tian; Ding Shu-ming. Studies on Protoplast Culture of Upland Rice and Plant Regeneration [J]. Acta Agron Sin, 1994, 20(04): 419-425.
[14] Liu Bao;Wu Qin-sheng;Liu Da-jun. Barley Protoplast Culture:Embryogenic Callus Formation and Albino Plantlet Regeneration [J]. Acta Agron Sin, 1993, 19(06): 520-522.
[15] Lu Hui-neng Gai Jun-yi;Ma Yu-hua;Wei Zhi-ming;Xu Zhi-hong. Soybean Protoplast Culture under Different Hormone Conditions and Plantlet Regeneration [J]. Acta Agron Sin, 1993, 19(04): 328-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!