Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2220-2227.doi: 10.3724/SP.J.1006.2025.44203

• RESEARCH NOTES • Previous Articles     Next Articles

Regulation of ODAP levels in Lathyrus sativus L. via interaction between LsSAT2 and LsAAE3

LIU Xiao-Ning1,ZHANG Ying2,CAI Man-Lei2,MA Hao2,MIAO Zhi-Bo2,CAO Ning3,LIAN Rong-Fang3,*,XU Quan-Le2,*   

  1. 1 School of Medicine, Huanghe S&T University, Zhengzhou 450006, Henan, China; 2 College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; 3 Dingxi Academy of Agricultural Sciences, Dingxi 743000, Gansu, China
  • Received:2024-12-04 Revised:2025-04-25 Accepted:2025-04-25 Online:2025-08-12 Published:2025-05-07
  • Supported by:
    This study was supported by the Key Scientific Research Projects of Henan Provincial Department of Education for Institutions of Higher Learning (25B180013), the Natural Science Foundation of Shaanxi Province (2023-JC-YB-152), the China Agriculture Research System of MOF and MARA (Food Legumes, CARS-08-Z21), the Tackling-Plan Project of Henan Department of Science and Technology (252102110271), and the National Undergraduate Training Programs fo Innovation and Entrepreneurship (202401360B1). 

Abstract:

Serine acetyltransferase 2 (LsSAT2) in Lathyrus sativus functions as the rate-limiting enzyme in the biosynthesis of the neuroactive compound β-ODAP (β-N-oxalyl-L-αβ-diaminopropionic acid). To explore the regulatory mechanisms underlying LsSAT2 activity, we overexpressed LsSAT2 in L. sativus hairy roots. Proteins interacting with LsSAT2 were subsequently identified via immunoprecipitation followed by mass spectrometry (IP-MS), and their interactions were confirmed using protein–protein docking, yeast two-hybrid (Y2H) analysis, and pull-down assays. The results revealed that LsSAT2 interacts with an acyl-CoA synthetase, LsAAE3, through its C-terminal region. Overexpression of LsSAT2 or LsAAE3 in hairy roots led to a 52.4% reduction or a 55.9% increase in β-ODAP content, respectively, indicating a functional interplay between these two proteins. These findings provide important insights into the genetic regulation of β-ODAP biosynthesis and establish a foundation for future metabolic engineering in L. sativus.

Key words: Lathyrus sativus, dencichine, serine acetyltransferase, oxalyl-CoA synthase, protein-protein interaction

[1] 徐全乐, 蒋景龙, 焦成瑾, 张大伟, Neil C. Turner, Shiv Kumar, 熊友才. 山黧豆160年研究历程及进展. 西北植物学报, 2021, 41: 1583–1604.
Xu Q L, Jiang J L, Jiao C J, Zhang D W, Turner N C, Kumar S, Xiong Y C. Process and progress of researches on Lathyrus sativus L. over the past 160 years. Acta Bot Boreali-Occident Sin, 2021, 41: 15831604 (in Chinese with English abstract).

[2] Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J, 2016, 14: 1394–1405.

[3] Lambein F, Travella S, Kuo Y H, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta, 2019, 250: 821838.

[4] Long Y C, Ye Y H, Xing Q Y. Studies on the neuroexcitotoxin beta-N-oxalo-L-alpha, beta-diaminopropionic acid and its isomer alpha-N-oxalo-L-alpha, beta-diaminopropionic acid from the root of Panax species. Int J Pept Protein Res, 1996, 47: 4246.

[5] Kuo Y H, Ikegami F, Lambein F. Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry, 2003, 62: 10871091.

[6] Koh H L, Lau A J, Chan E C. Hydrophilic interaction liquid chromatography with tandem mass spectrometry for the determination of underivatized dencichine (beta-N-oxalyl-L-alpha, beta-diaminopropionic acid) in Panax medicinal plant species. Rapid Commun Mass Spectrom, 2005, 19: 12371244.

[7] Xu Q L, Liu F J, Chen P, Jez J M, Krishnan H B. β-N-oxalyl-l-α, β-diaminopropionic acid (β-ODAP) content in Lathyrus sativus: the integration of nitrogen and sulfur metabolism through β-cyanoalanine synthase. Int J Mol Sci, 2017, 18: 526.

[8] Liu F J, Jiao C J, Bi C X, Xu Q L, Chen P, Heuberger A L, Krishnan H B. Metabolomics approach to understand mechanisms of β-N-oxalyl- l -α, β-diaminopropionic acid (β-ODAP) biosynthesis in grass pea (Lathyrus sativus L.). J Agric Food Chem, 2017, 65: 1020610213.

[9] Xu Q L, Liu F J, Qu R H, Gillman J D, Bi C X, Hu X, Chen P, Krishnan H B. Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Rep, 2018, 36: 832843.

[10] Song Y Y, Wang L, Liu F J, Jiao C J, Nan H, Shen X, Chen H, Li Y F, Lei B L, Jiang J L, et al. β-cyanoalanine synthase regulates the accumulation of β-ODAP via interaction with serine acetyltransferase in Lathyrus sativus. J Agric Food Chem, 2021, 69: 19531962.

[11] Ma H, Song Y Y, Zhang Y, Guo H Y, Lyu G W, Chen H, Liu J Y, Liu X N, An Z F, Wang L, et al. Critical sites of serine acetyltransferase in Lathyrus sativus L. affecting its enzymatic activities. J Agric Food Chem, 2023, 71: 78587865.

[12] Ikegami F, Ongena G, Sakai R, Itagaki S, Kobori M, Ishikawa T, Kuo Y H, Lambein F, Murakoshi I. Biosynthesis of β-(isoxazolin-5-on-2-yl)-l-alanine by cysteine synthase in Lathyrus sativus. Phytochemistry, 1993, 33: 9398.

[13] Goldsmith M, Barad S, Peleg Y, Albeck S, Dym O, Brandis A, Mehlman T, Reich Z. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). RSC Chem Biol, 2022, 3: 320333.

[14] Johnston G A R, Lloyd H J. Oxalyl-coenzyme A synthetase and the neurotoxin beta-n-oxalyl-l-alpha, beta-diaminopropionate. Aust J Biol Sci, 1967, 20: 1241–1244.

[15] Malathi K, Padmanaban G, Rao S L N, Sarma P S. Studies on the biosynthesis of β-N-oxalyl-l-α, β-diaminopropionic acid, the Lathyrus sativus neurotoxin. Biochim Biophys Acta-Gen Subjects, 1967, 141: 7178.

[16] 贾海燕, 张颖, 陈红, 刘嘉怡, 焦成瑾, 徐全乐. 山黧豆AAE超家族基因鉴定及LsAAE3的酶活检测. 西北植物学报, 2024, 44: 443–450
Jia H Y, Zhang Y, Chen H, Liu J Y, Jiao C J, Xu Q L. Gene identification of the AAE superfamily and AAE3 activity determination in Lathyrus sativus L.. Acta Bot Boreali-Occident Sin, 2024, 44: 443–450 (in Chinese with English abstract).

[17] Edwards A, Njaci I, Sarkar A, Jiang Z Q, Kaithakottil G G, Moore C, Cheema J, Stevenson C E M, Rejzek M, Novák P, et al. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nat Commun, 2023, 14: 876.

[18] 张颖. 山黧豆和豌豆中β-ODAP生物合成的蛋白调控网络分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2024.
Zhang Y. Analysis of Protein Regulatory Networks of β-ODAP Biosynthesis in Lathyrus sativus L. and Pisum sativum L. MS Thesis of Northwest A F University, Yangling, Shaanxi, China, 2024 (in Chinese with English abstract).

[19] Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard A J, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493500. 

[20] Badawi M M, Alla A A F, Alam S, Mohamed W, Osman D, Ali S, Ahmed E M E, Adam A A, Abdullah R O, Salih M. Immunoinformatics predication and in silico modeling of epitope-based peptide vaccine against virulent Newcastle disease viruses. Am J Infect Dis Microbiol, 2016, 4: 6171.

[21] Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol, 2007, 372: 774797.

[22] Boulfekhar R, Ohlund L, Kumaresan K M, Megoura M, Warkentin T D, Ispas-Szabo P, Sleno L, Mateescu M A. Diamine oxidase as a therapeutic enzyme: study of germination from vegetal sources and investigation of the presence of β-N-oxalyl-l-α, β-diaminopropionic acid (β-ODAP) using LC-MS/MS. Int J Mol Sci, 2023, 24: 4625.

[23] 贾海燕, 李辰浩, 宋瑶瑶, 刘凤娟, 焦成瑾, 徐全乐. 山黧豆β-腈基丙氨酸合成酶基因LsCAS的原核表达及蛋白聚合状态分析. 西北植物学报, 2021, 41: 16051610.
Jia H Y, Li C H, Song Y Y, Liu F J, Jiao C J, Xu Q L. Prokaryotic expression and protein polymerization analysis of β-cyanoalanine synthase in Lathyrus sativus. Acta Bot Boreali-Occident Sin, 2021, 41: 16051610 (in Chinese with English abstract). 

[24] 宋瑶瑶. 山黧豆β-ODAP生物合成关键酶丝氨酸乙酰基转移酶活性调控的机制研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Song Y Y. Activity Regulation of Serine Acetyltransferase, a Key Enzyme Involved in β-ODAP Biosynthesis of Lathyrus sativus. MS Thesis of Northwest A F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).

[25] De Bruyn A, Becu C, Lambein F, Kebede N, Abegaz B, Nunn P B. The mechanism of the rearrangement of the neurotoxin β-ODAP to α-ODAP. Phytochemistry, 1994, 36: 8589.

[1] WANG Qing, WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na, CHENG Hong-Yan. Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1230-1247.
[2] SONG Jian-Min,DAI Shuang,LI Hao-Sheng,LIU Ai-Feng,CHENG Dun-Gong,CHU Xiu-Sheng. Expression of a Wheat Endosperm 14-3-3 Protein and Its Interactions with Starch Biosynthetic Enzymes in Amyloplasts [J]. Acta Agron Sin, 2009, 35(8): 1445-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .