Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (1): 79-86.doi: 10.3724/SP.J.1006.2009.00079
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Jian-Jun1,XIAO Yong-Gui2,CHENG Dun-Gong1,LI Hao-Sheng1,LIU Li2,SONG Jian-Min1,LIU Ai-Feng1,ZHAO Zhen-Dong1,HE Zhong-Hu2,3*
[1]Ehdaie B, Whitkus R W, Waines J G. Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci, 2003, 43: 710–717 [2]Rabinovich S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340 [3]Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531–535(in Chinese with English abstract) [4]Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎), Pe?a R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin (中国农业科学), 2005, 38(10): 1944–1950(in Chinese with English abstract) [5]Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640–1647 [6]Liu J-J (刘建军), He Z-H(何中虎), Pe?a R J, Zhao Z-D(赵振东). The effects of 1B/1R translocation on grain quality and noodle quality of bread wheat. Acta Agron Sin (作物学报), 2004, 30(2): 149–153(in Chinese with English abstract) [7]Burnett C J, Lorenz K J, Carver B F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995, 86: 159–166 [8]Moreno-Sevilla B, Baenziger P S, Shelton D R, Graybosch R A, Peterson C J. Agronomic performance and end-use quality of 1B vs 1B/1R genotypes derived from the winter wheat “Rawhide”. Crop Sci, 1995, 35: 1607–1612 [9]Martin P, Carrillo J M. Cumulative and interaction effects of prolamin allelic variation and of 1BL/1RS translocation on flour quality in bread wheat. Euphytica, 1999, 108: 29–39 [10]Branlard G, Felix I. Part of the HMW glutenin subunits and omega gliadin allelic variants in the explanation of the quality parameters. In: Martino al Cimino S eds. Proceedings of International Meeting—Wheat Kernel Proteins: Molecular and Functional Aspects, Viterbo, Italy, 1994. pp 249–251 [11]Gianibelli M C, Larroque O R, MacRichie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635–646 [12]Bietz J A, Wall J S. Isolation and characterization of gliadin-like subunits from glutenin. Cereal Chem, 1973, 50: 537–547 [13]Gupta R B, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats: II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci, 1994, 19: 19–29 [14]Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67 [15]He Z H, Liu L, Xia X C, Liu J J, Pe?a R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345–350 [16]Kolster P, Krechting C F, van Gelder W M J. Quantification of individual high molecular weight subunits of wheat glutenin SDS-PAGE and scanning densitometry. J Cereal Sci, 1992, 15: 49–61 [17]Wang F-C(王凤成), Zhang W(张玮), Chen W-Y(陈万义). Mixograph and its application in the determination of wheat flour quality. Cereal & Feed Ind, 2004, 12: 10–12 [18]Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387–395 [19]Francis H A, Leitch A R, Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636–642 [20]Xiao Y-G(肖永贵), Yan J(阎俊), He Z-H(何中虎), Zhang Y(张勇), Zhang X-K(张晓科), Liu L(刘丽), Li T-F(李天富), Qü Y-Y(曲延英), Xia X-C(夏先春). Effect of 1BL/1RS translocation on yield traits and powdery mildew resistance in common wheat and QTL analysis. Acta Agron Sin (作物学报), 2006, 32(11): 1636–1641(in Chinese with English abstract) [21]Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Yan J(阎俊), Zhang Y(张艳), Pe?a R J. Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agron Sin (作物学报), 2004, 30(11): 959–968(in Chinese with English abstract) [22]Graybosch R A. Uneasy Unions: Quality effects of rye chromatin transfer to wheat. J Cereal Sci, 2001, 33: 3–16 [23]Fenn D, Lukow O M, Bushuk W, DePauw R M. Milling and baking quality of 1BL/1RS translocation wheat: I. Effects of genotype and environment. Cereal Chem, 1994, 71: 189–195 [24]Zarco-Hernandez J A, Santiveri F, Michelena A, Pe?a R J. Durum wheat (Triticum turgidum L.) carrying the 1BL/1RS chromosomal translocation: agronomic performance and quality characteristics under Mediterranean conditions. Eur J Agron, 2005, 22: 33–43 [25]Finney K F, Shogren M D. A ten-gram mixograph for determining and predicting functional properties of wheat flours. Baker’s Digest, 1972, 46: 32–77 [26]Randall P G, Manley M, McGill A E, Taylor J R N. Relationship between high Mr subunits of glutenin of South African wheats and end-use quality. J Cereal Sci, 1993, 18: 251–258 [27]Lee J H, Graybosch R A, Peterson C J. Quality and biochemical effects of a 1BL/1RS wheat-rye translocation in wheat. Theor Appl Genet, 1995, 90: 105–112 [28]Pe?a R J, Amaya A, Rajaram S, Mujeep-Kazi A. Variation in quality of characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci, 1990, 12: 105–112 |
[1] | HAN Li-Ming, ZHANG Yong, PENG Hui-Ru, QIAO Wen-Chen, HE Ming-Qi, WANG Hong-Gang, QU Yan-Ying, HE Zhong-Hu. Analysis of Heat Resistance for Cultivars from North China Winter Wheat Region by Yield and Quality Traits [J]. Acta Agron Sin, 2010, 36(09): 1538-1546. |
[2] | REN Yan;LIANG Dan;ZHANG Ping-Ping;HE Zhong-Hu;CHEN Jing;FU Ti-Hua;XIA Xian-Chun. Characterization of Overexpressed Bx7 Gene(Bx7OE) in Chinese and CIMMYT Wheats by STS Markers [J]. Acta Agron Sin, 2009, 35(3): 403-411. |
[3] | ZHANG Kun-Pu,XU Xian-Bin,TIAN Ji-Chun. QTL Mapping for Grain Yield and Spike Related Traits in Common Wheat [J]. Acta Agron Sin, 2009, 35(2): 270-278. |
[4] | ZHANG Li-Ping;YAN Jun;XIA Xian-Chun;HE Zhong-Hu and Mark W. Sutherland. QTL Mapping for Kernel Yellow Pigment Content in Common Wheat [J]. Acta Agron Sin, 2006, 32(01): 41-45. |
|