Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (10): 1724-1734.doi: 10.3724/SP.J.1006.2011.01724

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Gene Glyma13g21630 Diversity in Cultivated (G. max) and Wild (G. soja) Soybeans

ZHANG Le,Li Ying-Hui**,LIU Zhang-Xiong,QIU Li-Juan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Germplasm Utilization, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-03-15 Revised:2011-06-25 Online:2011-10-12 Published:2011-07-28
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105841

Abstract: Glyma13g21630 from soybean is homologous with a gene related to leaf size from Arabidopisis thaliana, and it experienced man-made selection during domestication in small sample test. This paper aims at analyzing single nucleotide polymorphism of Glyma13g21630 in large sample test and providing the foundation for tracing back to soybean domestication and analyzing the genetic basis of domesticated traits. According to Sanger method, PCR products of Glyma13g21630 from 49 wild soybean and 84 cultivars (including 46 landraces and 38 cultivars) were sequenced. The distribution patterns of single nucleotide polymorphism (SNP) for Glyma13g21630 were summarized. Using DNAStar, Mega, DNAsp and Tassel software tools, a total of 29 polymorphism sites were identified, which included 22 SNPs and seven InDels with frequencies of 1SNP/138 bp and 1InDel/434 bp, respectively. There were rich regions for nucleotide variation in intron three and intron five and less variations in other regions. Haplotype analysis indicated that the number of polymorphic loci was reducing from wild soybean to cultivated soybean, and the distribution range was correspondingly narrowed. Linkage disequilibrium analysis demonstrated that 42.86% of SNP sites in wild soybean were at significant linkage disequilibrium levels. The high ratio of Ka/Ks illustrated that some sites suffered strong positive selection pressure, which resulted in the reduction of polymorphism. The favored variation of Glyma13g21630 has been fixed in cultivated soybean, showing a bottleneck effect simultaneously.

Key words: Soybean, Glyma13g21630, Single nucleotide polymorphism, Haplotype

[1]Wang X J, Reyes J L, Chua N H, Gassterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 2004, 5: 1–15
[2]Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365–1369
[3]Thubrer C S, Reagon M, Rross B L, Olsen K M, Jia Y L, Caicedo A L. Molecular evolution of shattering loci in US weedy rice. Mol Ecol, 2010, 19: 3271–3284
[4]Zhou X-A(周新安), Peng Y-H(彭玉华), Wang G-X(王国勋), Chang R-Z(常汝镇). Preliminary studies on the centres of genetic diversity and origination of cultivate soybeans in China. Sci Agric Sin (中国农业科学), 1998, 31(3): 37–43 (in Chinese with English abstract)
[5]Zhao T-J(赵团结), Gai J-Y(盖钧镒), Li W-H(李旺海), Xing H(邢邯), Qiu J-X(邱家驯). Advances in breeding for super high-yielding soybean cultivars. Sci Agric Sin (中国农业科学), 2006, 39(1): 29–37 (in Chinese with English abstract)
[6]Palatnik J, Allen E, Wu X L, Schommer C, Schwab R, Currington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257–263
[7]Gorou H, Ali F, Ushio F, Hirokazu T. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006, 119: 37–42
[8]Ascencio-Ibanez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella Rino, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminvirus infection, Plant Physiol, 2008, 148: 436–454
[9]Wang L, Hao L, Li X, Hu S, Ge S, Yu J. SNP deserts of Asian cultivated rice: genomic regions under domestication. Evol Biol, 2009, 22: 751–761
[10]Joseph A H, Walter R F, Randy C S, Grace A W, Susan L J, Silvia R C. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74
[11]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016
[12]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561
[13]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[14]Qiu L-J(邱丽娟), Li Y-H(李英慧), Guan R-X(关荣霞), Liu Z-X(刘章雄), Wang L-X(王丽侠), Chang R-Z(常汝镇). Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin (作物学报), 2009, 35(4): 571–579 (in Chinese with English abstract)
[15]Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497
[16]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
[17]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585–95
[18]Fisher R A. The mathematical distribution used in the common tests of significance. Econometrica, 1935, 98: 39–54
[19]Nielsen R. Molecular signatures of natural selection. Ann Rev Genet, 2005, 39: 197–218
[20]Hyten D L, Choi I Y, Song Q J, Shoemaker R C, Nelson R L, Costa J M, Specht J E, Cregan P B. Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics, 2007, 175: 1937–1944
[21]Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123–1134
[22]Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yooh M S, Hwang E Y, Yi S I, Yong N D, Shoemaker R C, Tassll C P, Specht J E. A soybean transcript map: gene distribution, haplotype and SNP analysis. Genetics, 2007, 176: 685–696
[23]Liu C-G(刘传光), Zhang G-Q(张桂权). Single nucleotide polymorphism (SNP) and its application in rice. Hereditas, 2006, 28(6): 737–744 (in Chinese with English abstract)
[24]Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky P M, Rigau J, Murigneux A, Martinant J P, Barriere Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet, 2004, 16, 5: 19
[25]Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D, Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P Y, Mardis E R, Yeh R T, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston R H, McPherson J D, Gilman B, Schaffner S, Van Etten W J, Reich D, Higgins J, Daly M J, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody M C, Linton L, Lander E S, Altshuler D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 15, 409: 928–933
[26]Chen J-B(陈吉宝), Jing R-L(景蕊莲), Yuan H-Y(员海燕), Wei B(卫波), Chang X-P(昌小平). Single nucleotide polymorphism of TaDREB1 gene in wheat germplasm. Sci Agric Sin (中国农业科学), 2005, 38: 2387–2394 (in Chinese with English abstract)
[27]Wang A-P(王爱萍), Mao X-G(毛新国), Jing R-L(景蕊莲), Chang X-P(昌小平), Yang W-D(杨武德). Single nucleotide polymorphism of TaMyb2-II gene in common wheat (Triticum aestivum L.) and its relatives. Acta Agron Sin (作物学报), 2006, 32(12): 1809–1816 (in Chinese with English abstract)
[28]Rickert A M, Kim J H, Meyer S, Nagel A, Ballvora A, Oefner P J, Gebhardt C. First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J, 2003, 1: 399–410
[29]Tian Z X, Wang X B, Lee R, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for feterminate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
[30]Wu X-L(吴晓雷), He C-Y(贺超英), Chen S-Y(陈受宜), Zhuang B-C(庄炳昌), Wang K-J(王克晶), Wang X-C(王学臣). Phylogenetic analysis of interspecies in genus Glycine through SSR markers. Acta Genet Sin (遗传学报), 2001, 28: 359–366 (in Chinese with English abstract)
[31]Hyten D L, Song Q J, Zhu Y L, Choi I Y, Nelson R L, Costa J M, Specht J E, Shoemaker R C, Cregan P B. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA, 2006, 103: 16666–16671
[32]Tenaillon M, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphisms along chromosome 1 of maize (Zea mays ssp. may L). Proc Natl Acad Sci USA, 2001, 98: 9161–9166
[33]Ching A, Katherine S C, Mark J, Maurine D, Oscar S S, Scott T, Michele M, Rafalski J. SNP frequency haplotype structure and linkage diseqilibrium in elite maize inbred lines. BMC Genet, 2002, 3: 19
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!