Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (04): 571-579.doi: 10.3724/SP.J.1006.2013.00571

• REVIEW •     Next Articles

Research Progresses on Photoperiodic Flowering and Maturity Genes in Soybean (Glycine max Merr.)

XIA Zheng-Jun   

  1. Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin 150081, China
  • Received:2012-09-24 Revised:2013-01-16 Online:2013-04-12 Published:2013-01-28

Abstract:

Plant photoperiodism was discovered in 1920 when scientists studied the light response of soybean and tobacco. As a model plant, soybean made a crucial contribution towards establishment of the general concept of photoperiodism. Apart from its palaeopolyploid nature and relative bigger genome size of genome, the unknown molecular identities of major QTL genes controlling flowering time hamper our understanding of the soybean photoperiodism. After the successful cloning of major QTL genes controlling flowering time, especially the major QTL E1, the unique mechanism in soybean photoperiodic flowering has been generally revealed. Although the details of molecular mechanism of soybean photoperiodism remain fully unclear, genetic and molecular studies have proven that the E1 and GmFT genes stand as major regulators (integrators) in the regulatory pathway of photoperiodic flowering. The advance on the mechanism of photoperiodic flowering in soybean will provide solid molecular basis for cultivar classification of maturity, proper crop arrangement and molecular breeding of new cultivars.

Key words: Soybean, Photoperiodic response, Flowering time, Maturity time, E1

[1]Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res, 1920, 18: 553–606



[2]Owen F V. Inheritance studies in soybeans. II. glabrousness, color of pubescence, time of maturity, and linkage relations. Genetics, 1927, 12: 519–523



[3]Garner W W, Allard H A. Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiol, 1933, 8: 347–356



[4]Heinze P H, Parker M W, Borthwick H A. Floral initiation in Biloxi soybean as influenced by grafting. Bot Gaz, 1942, 103: 518–530



[5]Coulter M W, Hamner K C. Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiol, 1964, 39:848–856



[6]Mauseth J D. Botany: An Introduction to Plant Biology, 3rd edn. Sudbury, M A: Jones and Bartlett Learning, 2003. pp 422–427



[7]Hamner K C. Interrelation of light and darkness in photoperiodic induction. Bot Gaz, 1940, 101: 658–687



[8]Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol, 2004, 135: 677–684



[9]Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol, 2011, 14: 45–52



[10]Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland. G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613–1616



[11]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003–1006



[12]Fornara F, de Montaigu A, Coupland G SnapShot: control of flowering in Arabidopsis. Cell, 2010, 141: 550 e1–2



[13]Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293–297



[14]Sawa M, Nusinow D A, Kay SA, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318: 261–265



[15]Mathieu J, Warthmann N, Küttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol, 2007, 17: 1055–1060



[16]Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033–1036



[17]Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet, 2010, 42: 635–638



[18]Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol, 2008, 49: 1645–1658



[19]Griffiths S, Dunford R P, Coupland G, Laurie D A. The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003, 131: 1855–1867



[20]Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol, 2007, 144: 248–257



[21]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096–1105



[22]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767



[23]Bernard R L. Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242–244



[24]Buzzell R I, Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703–707



[25]Buzzell R I, Voldeng H D. Inheritance of insensitivity to long day length. Soybean Genet Newsl, 1980, 7: 26–29



[26]McBlain B A, Bernard R L, Cremeens C R, Korczak J F. A procedure to identify genes affecting maturity using soybean isoline testers. Crop Sci, 1987, 27: 1127–1132



[27]Ray J D, Hinson K, Mankono, J E B Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001–1006



[28]Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229–232



[29]Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698–701



[30]Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524–527



[31]Cober E R, Tanner J W, Voldeng H D. Genetic control of photoperiod response in early-maturing near-isogenic soybean lines. Crop Sci, 1996, 36: 601–605



[32]Cober E R, Tanner J W, Voldeng H D Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci, 1996b, 36: 606–610



[33]Abe J, Xu D H, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y, Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300–1304



[34]Stewart D W, Cober E R, Bernard R L. Modeling genetic effects on the photothermal response of soybean phenological development. Agron J, 2003, 95: 65–70



[35]Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61–72



[36]Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet, 2005, 110: 634–639



[37]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336



[38]Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, doi/10.1073/pnas.1117982109



[39]Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178–183



[40]Thakare D, Kumudini A, Dinkins R D. Expression of flowering-time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta, 2010, 231: 951–963



[41]Thakare D, Kumudini A, Dinkins R D. The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Planta, 2011, 234: 933–943



[42]Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007



[43]Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol, 2009, 69: 164–175



[44]Neff M M, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol, 1998, 118: 27–35



[45]Weller J L, Murfet I C, Reid J B. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol, 1997, 114: 1225–1236



[46]Weller J L, Beauchamp N, Kerckhoffs L H, Platten J D, Reid J B. Interaction of phytochromes A and B in the control of deetiolation and flowering in pea. Plant J, 2001, 26: 283–294



[47]Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311–3325



[48]Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262



[49]Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407



[50]Kong F, Liu B, Xia Z, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two Coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154 1220–1231



[51]Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One, 2011, 6: e29238



[52]Harmer S L. The circadian system in higher plants. Annu Rev Plant Biol, 2009, 60: 357–377



[53]McClung C R, Gutierrez R A. Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev, 2010, 20: 588–598



[54]Bell-Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Gene, 2005, 6: 544–556



[55]Más P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol, 2008, 18: 273–81



[56]Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy M E, Ellis N, Beltran J P, Rameau C, Weller J L. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol, 2005, 137:1420–1434



[57]Quecini V, Zucchi M I, Baldin J, Vello N A. Identification of soybean genes involved in circadian clock mechanism and photoperiodic control of flowering time by in silico analyses. J Integr Plant Biol, 2007, 49: 1640–1653



[58]Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008, 105: 21028–21033



[59]Matsumura H, Kitajima H, Akada S, Abe J, Minaka N, Takahashi R. Molecular cloning and linkage mapping of cryptochrome multigene family in soybean. Plant Genome, 2009, 2: 271–281



[60]Cerdán P D, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423: 881–885



[61]Xia Z J, Zhai H, Liu B H, Kong F J, Yuan X H, Hongyan Wu, Cober E, Harada K. Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Syst Evol, 2012, 298: 1217–1227



[62]Hayama R, Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol, 2003, 6: 13–19



[63]Liu H, Wang H, Gao P, Xü J, Xü T, Wang J, Wang B, Lin C, Fu Y F. Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J Plant Physiol, 2009, 166: 278–289



[64]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484



[65]Pierre J B, Bogard M, Herrmann D, Huyghe C, Julier B. A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed, 2011, 28: 25–35



[66]Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J, 2006, 46: 462–476



[67]Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell, 2007, 19: 2988–3000



[68]Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120



[69]Huang G W, Ma J H, Han Y Z, Chen X J, Fu Y F. Cloning and expression analysis of the soybean CO-like gene GmCOL9. Plant Mol Bio Rep, 2011, 29: 352–359



[70]Liu L, Ma J, Han Y, Chen X, Fu Y F. The isolation and analysis of a soybean CO homologue GmCOL10. Russian J Plant Physiol, 2011, 58: 330–336



[71]Zhang Q-Z(张清哲), Ma J-H(马锦花), Chen X-J(陈新建), Fu Y-F(傅永福). Cloning and analysis of GmCOL4 gene in Glycine max L. Acta Agron Sin (作物学报), 2010, 36(4): 539−548 (in Chinese with English abstract)



[72]Hecht V, Knowles C L, Vander Schoor J K, Liew L C, Jones S E, Lambert M J, Weller J L. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol, 2007, 144: 648–661



[73]Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol, 2008, 18: 1338–1343



[74]Cober E R, Curtis D F. Both promoters and inhibitors affected flowering time in grafted soybean flowering-time isolines. Crop Sci, 2003, 43: 886–891



[75]Przepiorkowski T, Martin S K S. The effect of grafting on the flowering of near-isogenic lines of soybean. Crop Sci, 2003, 43: 1760–1763



[76]Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R. Genome duplication in soybean (Glycine subgenus soja). Genetics, 1996, 144: 329–338



[77]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson RL, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568



[78]Schlueter J A, Scheffler B E, Schlueter S D, Shoemaker R C. Sequence conservation of homoeologous bacterial artificial chromosomes and transcription of homoeologous genes in soybean (Glycine max L. Merr). Genetics, 2006, 174: 1017–1028



[79]Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon S B, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell, 2012, 24: 21–32



[80]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198–210



[81]Le Corre V, Roux F, Reboud F. DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol, 2002, 19: 1261–1271



[82]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926–936



[83]Takahashi Y, Teshima K M, Yokoi S, Innan H, Shimamoto K. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA, 2009, 106: 4555–4560



[84]Wang J-L(王金陵). Photoperiodic response in soybean. Agri-Forest Gazeta (农林新报), 1942, 19–30 (in Chinese)



[85]Wang J-L(王金陵), Wu Y-X(武镛祥), Wu H-L(吴和礼), Sun S-C(孙善澄). Analysis on photoperiod ecotypes of cultivated soybean originating from different locations of China. Acta Agric Sin (农业学报), 1956, 7(3): 169–180 (in Chinese)



[86]Wang J-L(王金陵), Zhu Q-C(祝其昌). Preliminary study on the inheritance of soybean maturity. Acta Agron Sin (作物学报), 1963, 2(3): 333−336 (in Chinese with English abstract)



[87]Gai J-Y(盖钧镒), Wang Y-S(汪越胜), Zhang M-C(张孟臣), Wang J-A(王继安), Chang R-Z(常汝镇). Studies on the cas-sification of maturity groups of soybeans in China. Acta Agron Sin (作物学报), 2001, 27(3): 286−292 (in Chinese with English abstract)



[88]Wang Y(王英), Wu C-X(吴存祥), Zhang X-M(张学明), Wang Y-P(王云鹏), Han T-F(韩天富). Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin (作物学报), 2008, 34: 1160−1168 (in Chinese with English abstract)



[89]Han T-F(韩天富), Wang J-L(王金陵). A study on the responses of different ecotypes of Chinese soybean to post-flowering photoperiod. Acta Agron Sin (作物学报), 1996, 22: 20–26 (in Chinese with English abstract)



[90]Ning H-X(宁慧霞), Li Y-H(李英慧), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Guan R-X(关荣霞), Luo S-P(罗淑萍), Qiu L-J(邱丽娟). Deducing maturity genotype of the Chinese soybean varieties. Acta Agron Sin (作物学报) 2008, 34(3): 382−388 (in Chinese with English abstract)



[91]Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005–1012



[92]Sayama T, Hwang T Y, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z, Tsubokura Y, Watanabe S, Harada K, Funatsuki H, Ishimoto M. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci, 2010, 60: 380–389



[93]Upadhyay A P, Asumadu H, Ellis R H. A Characterization of photothermal flowering responses in maturity isolines of soybean [Glycine max (L.) Merrill] cv Clark. Ann Bot, 1994, 74: 87–96



[94]Upadhyay A P, Summerfield R H, Ellis R H, Roberts E H, Qi A. Variation in the durations of the photoperiod-sensitive and photoperiod- insensitive phases of development to flowering among eight maturity isolines of soybean [Glycine max (L.) Merrill]. Ann Bot,1994, 74: 97–101



[95]Curtis D F, Tanner J W, Luzzi B M, Hume D J Agronomic and phenological differences of soybean isolines differing in maturity and growth habit. Crop Sci, 2000, 40: 1624–1629



[96]Saindon G, Beversdorf W D, Voldeng H D. Adjustment of the soybean phenology using the E4 locus. Crop Sci, 1989, 29: 1361–1365



[97]Khan N A, Githiri S M, Benitez E R, Abe J, Kawasaki S, Hayashi T, Takahashi R. QTL analysis of cleistogamy in soybean. Theor Appl Genet, 2008, 117: 479–487



[98]Takahashi R, Abe J. Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. Crop Sci, 1999, 39: 1657–1662



[99]Githiri S M, Yang D, Khan N A, Xu D, Komatsuda T, Takahashi R. QTL analysis of low temperature induced browning in soybean seed coats. J Hered, 2007, 98: 360–366



[100]Woodworth C M. Inheritance of growth habit, pod color, and flowering color in soybean. J Am Soc Agron, 1923, 15: 485–495



[101]Kim M Y, Lee S, Van K, Kim T H, Jeong S C, Choi I Y, Kim D S, Lee Y S, Park D, Ma J, Kim W Y, Kim B C, Park S, Lee K A, Kim D H, Kim K H, Shin J H, Jang Y E, Kim K D, Liu W X, Chaisan T, Kang Y J, Lee Y H, Kim K H, Moon J K, Schmutz J, Jackson S A, Bhak J, Lee S H. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA, 2010, 107: 22032–22037



[102]Lam H M, Xu X, Liu X, Chen W, Yang G, Wong F L, Li M W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun S S, Zhang G. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059



[103]Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176: 685–696



[104]Haun W J, Hyten D L, Xu W W, Gerhardt D J, Albert T J, Richmond T, Jeddeloh J A, Jia G, Springer N M, Vance C P, Stupar R M. The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol, 2011, 155: 645–655



[105]Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 2010, 63: 86–99



[106]Wong C E, Singh M B, Bhalla P L. Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J, 2009, 57: 832–845

 


 
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!